Michael Heydt

Python Web Scraping

COOKDhoOK

Over 90 proven recipes to get you scraping with Python,
microservices, Docker, and AWS

L1 Packb

Python Web Scraping
Cookbook

Over 90 proven recipes to get you scraping with Python,
microservices, Docker, and AWS

Michael Heydt

BIRMINGHAM - MUMBAI

Python Web Scraping Cookbook

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Veena Pagare
Acquisition Editor: Tushar Gupta

Content Development Editor: Tejas Limkar
Technical Editor: Danish Shaikh

Copy Editor: Safis Editing

Project Coordinator: Manthan Patel
Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Tania Dutta

Production Coordinator: Shraddha Falebhai

First published: February 2018
Production reference: 1070218
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78728-521-7

www.packtpub.com

http://www.packtpub.com

Contributors

About the author

Michael Heydt is an independent consultant specializing in social, mobile, analytics, and
cloud technologies, with an emphasis on cloud native 12-factor applications. Michael has
been a software developer and trainer for over 30 years and is the author of books such as
D3.js By Example, Learning Pandas, Mastering Pandas for Finance, and Instant
Lucene.NET. You can find more information about him on LinkedIn at michaelheydt.

I would like to greatly thank my family for putting up with me disappearing for months on
end and sacrificing my sparse free time to indulge in creation of content and books like this
one. They are my true inspiration and enablers.

About the reviewers

Mei Lu is the founder and CEO of Jobfully, providing career coaching for software
developers and engineering leaders. She is also a Career/Executive Coach for

Carnegie Mellon University Alumni Association, specializing in the software / high-tech
industry.

Previously, Mei was a software engineer and an engineering manager at Qpass,

M.LT., and MicroStrategy. She received her MS in Computer Science from the
University of Pennsylvania and her MS in Engineering from Carnegie Mellon
University.

Lazar Telebak is a freelance web developer specializing in web scraping, crawling, and
indexing web pages using Python libraries/frameworks.

He has worked mostly on projects of automation, website scraping, crawling, and exporting
data in various formats (CSV, JSON, XML, and TXT) and databases such as (MongoDB,
SQLAIchemy, and Postgres). Lazar also has experience of fronted technologies and
languages such as HTML, CSS, JavaScript, and jQuery.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Table of Contents

Preface 1
Chapter 1: Getting Started with Scraping 7
Introduction 7
Setting up a Python development environment 8
Getting ready 8
How to do it... 8
Scraping Python.org with Requests and Beautiful Soup 13
Getting ready... 13
How to do it... 14
How it works... 17
Scraping Python.org in urllib3 and Beautiful Soup 19
Getting ready... 19
How to do it... 19
How it works 20
There's more... 20
Scraping Python.org with Scrapy 21
Getting ready... 21
How to do it... 22
How it works 23
Scraping Python.org with Selenium and PhantomJ$S 25
Getting ready 25
How to do it... 26
How it works 28
There's more... 28
Chapter 2: Data Acquisition and Extraction 29
Introduction 29
How to parse websites and navigate the DOM using BeautifulSoup 30
Getting ready 30
How to do it... 32
How it works 35
There's more... 35
Searching the DOM with Beautiful Soup's find methods 35
Getting ready 35

Table of Contents

How to do it... 36
Querying the DOM with XPath and Ixml 38
Getting ready 39
How to do it... 39
How it works 45
There's more... 45
Querying data with XPath and CSS selectors 46
Getting ready 46
How to do it... 47
How it works 47
There's more... 48
Using Scrapy selectors 48
Getting ready 48
How to do it... 48
How it works 50
There's more... 50
Loading data in unicode / UTF-8 50
Getting ready 51
How to do it... 52
How it works 53
There's more... 53
Chapter 3: Processing Data 54
Introduction 54
Working with CSV and JSON data 55
Getting ready 55
How to do it 57
How it works 63
There's more... 63
Storing data using AWS S3 64
Getting ready 64
How to do it 65
How it works 68
There's more... 69
Storing data using MySQL 69
Getting ready 69
How to do it 70
How it works 74
There's more... 74

[ii]

Table of Contents

Storing data using PostgreSQL 75
Getting ready 75
How to do it 76
How it works 79
There's more... 79

Storing data in Elasticsearch 80
Getting ready 80
How to do it 80
How it works 83
There's more... 83

How to build robust ETL pipelines with AWS SQS 84
Getting ready 84
How to do it - posting messages to an AWS queue 85
How it works 86
How to do it - reading and processing messages 87
How it works 89
There's more... 89

Chapter 4: Working with Images, Audio, and other Assets 90

Introduction 91

Downloading media content from the web 91
Getting ready 91
How to do it 92
How it works 92
There's more... 93

Parsing a URL with urllib to get the filename 93
Getting ready 93
How to do it 93
How it works 94
There's more... 94

Determining the type of content for a URL 95
Getting ready 95
How to do it 95
How it works 95
There's more... 96

Determining the file extension from a content type 97
Getting ready 97
How to do it 97
How it works 97

[iii]

Table of Contents

There's more...
Downloading and saving images to the local file system
How to do it
How it works
There's more...
Downloading and saving images to S3
Getting ready
How to do it
How it works
There's more...
Generating thumbnails for images
Getting ready
How to do it
How it works
Taking a screenshot of a website
Getting ready
How to do it
How it works
Taking a screenshot of a website with an external service
Getting ready
How to do it
How it works
There's more...
Performing OCR on an image with pytesseract
Getting ready
How to do it
How it works
There's more...
Creating a Video Thumbnail
Getting ready
How to do it
How it works
There's more..
Ripping an MP4 video to an MP3
Getting ready
How to do it
There's more...

Chapter 5: Scraping - Code of Conduct

98

98

99

99
100
100
100
100
101
102
102
103
103
104
105
105
105
107
108
109
110
112
114
114
114
115
116
116
116
116
116
118
119
119
119
120
120

121

[iv]

Table of Contents

Introduction 121
Scraping legality and scraping politely 121
Getting ready 122
How to do it 123
Respecting robots.txt 123
Getting ready 125
How to do it 125
How it works 126
There's more... 127
Crawling using the sitemap 127
Getting ready 129
How to do it 130
How it works 131
There's more... 133
Crawling with delays 135
Getting ready 135
How to do it 135
How it works 137
There's more... 137
Using identifiable user agents 138
How to do it 138
How it works 138
There's more... 139
Setting the number of concurrent requests per domain 139
How it works 139
Using auto throttling 140
How to do it 140
How it works 140
There's more... 141
Using an HTTP cache for development 141
How to do it 141
How it works 141
There's more... 142
Chapter 6: Scraping Challenges and Solutions 143
Introduction 144
Retrying failed page downloads 144
How to do it 144
How it works 145

[v]

Table of Contents

Supporting page redirects
How to do it
How it works
Waiting for content to be available in Selenium
How to do it
How it works
Limiting crawling to a single domain
How to do it
How it works
Processing infinitely scrolling pages
Getting ready
How to do it
How it works
There's more...
Controlling the depth of a crawl
How to do it
How it works
Controlling the length of a crawl
How to do it
How it works
Handling paginated websites
Getting ready
How to do it
How it works
There's more...
Handling forms and forms-based authorization
Getting ready
How to do it
How it works
There's more...
Handling basic authorization
How to do it
How it works
There's more...
Preventing bans by scraping via proxies
Getting ready
How to do it
How it works
Randomizing user agents

145
145
146
147
148
149
150
150
151
151
152
154
155
156
157
157
158
160
160
160
161
161
162
162
164
164
164
165
167
167
168
168
168
168
169
169
169
170
170

[vil

Table of Contents

How to do it 171
Caching responses 172
How to do it 172
There's more... 173
Chapter 7: Text Wrangling and Analysis 175
Introduction 176
Installing NLTK 176
How to do it 176
Performing sentence splitting 177
How to do it 178
There's more... 179
Performing tokenization 179
How to do it 180
Performing stemming 181
How to do it 181
Performing lemmatization 182
How to do it 183
Determining and removing stop words 184
How to do it 184
There's more... 186
Calculating the frequency distributions of words 186
How to do it 187
There's more... 188
Identifying and removing rare words 188
How to do it 188
Identifying and removing rare words 190
How to do it 190
Removing punctuation marks 191
How to do it 191
There's more... 192
Piecing together n-grams 192
How to do it 193
There's more... 196
Scraping a job listing from StackOverflow 196
Getting ready 197
How to do it 199
There's more... 200
Reading and cleaning the description in the job listing 201

[vii]

Table of Contents

Getting ready 201
How to do it... 201
Chapter 8: Searching, Mining and Visualizing Data 206
Introduction 206
Geocoding an IP address 207
Getting ready 207
How to do it 209
How to collect IP addresses of Wikipedia edits 210
Getting ready 211
How to do it 212
How it works 213
There's more... 214
Visualizing contributor location frequency on Wikipedia 214
How to do it 215
Creating a word cloud from a StackOverflow job listing 217
Getting ready 218
How to do it 218
Crawling links on Wikipedia 219
Getting ready 219
How to do it 220
How it works 221
Theres more... 224
Visualizing page relationships on Wikipedia 224
Getting ready 224
How to do it 225
How it works 226
There's more... 227
Calculating degrees of separation 229
How to do it 229
How it works 229
There's more... 230
Chapter 9: Creating a Simple Data API 231
Introduction 231
Creating a REST API with Flask-RESTful 232
Getting ready 232
How to do it 232
How it works 233
There's more... 234

[viii]

Table of Contents

Integrating the REST API with scraping code 235
Getting ready 235
How to do it 237

Adding an API to find the skills for a job listing 238
Getting ready 238
How to do it 239

Storing data in Elasticsearch as the result of a scraping request 240
Getting ready 240
How to do it 241
How it works 244
There's more... 244

Checking Elasticsearch for a listing before scraping 246
How to do it 246
There's more... 247

Chapter 10: Creating Scraper Microservices with Docker 248

Introduction 248

Installing Docker 249
Getting ready 249
How to do it 250

Installing a RabbitMQ container from Docker Hub 251
Getting ready 252
How to do it 252

Running a Docker container (RabbitMQ) 254
Getting ready 254
How to do it 255
There's more... 257

Creating and running an Elasticsearch container 257
How to do it 257

Stopping/restarting a container and removing the image 259
How to do it 259
There's more... 262

Creating a generic microservice with Nameko 262
Getting ready 262
How to do it 263
How it works 265
There's more... 266

Creating a scraping microservice 266
How to do it 266

[ix]

Table of Contents

There's more... 268
Creating a scraper container 268
Getting ready 268
How to do it 270
How it works 272
Creating an API container 274
Getting ready 274
How to do it 274
There's more... 277
Composing and running the scraper locally with docker-compose 277
Getting ready 277
How to do it 278
There's more... 283
Chapter 11: Making the Scraper as a Service Real 284
Introduction 285
Creating and configuring an Elastic Cloud trial account 285
How to do it 286
Accessing the Elastic Cloud cluster with curl 289
How to do it 289
Connecting to the Elastic Cloud cluster with Python 290
Getting ready 290
How to do it 290
There's more... 292
Performing an Elasticsearch query with the Python API 294
Getting ready 295
How to do it 295
There's more... 298
Using Elasticsearch to query for jobs with specific skills 298
Getting ready 298
How to do it 298
Modifying the API to search for jobs by skill 302
How to do it 303
How it works 304
There's more... 305
Storing configuration in the environment 305
How to do it 306
Creating an AWS IAM user and a key pair for ECS 307
Getting ready 307

[x]

Table of Contents

How to do it 307
Configuring Docker to authenticate with ECR 309
Getting ready 309

How to do it 309

Pushing containers into ECR 311
Getting ready 311

How to do it 313

Creating an ECS cluster 317

How to do it 317

Creating a task to run our containers 320
Getting ready 320

How to do it 320

How it works 323

Starting and accessing the containers in AWS 326
Getting ready 326

How to do it 327

There's more... 330

Other Books You May Enjoy 332
Index 335

[xi]

Preface

The internet contains a wealth of data. This data is both provided through structured APIs
as well as by content delivered directly through websites. While the data in APIs is highly
structured, information found in web pages is often unstructured and requires collection,
extraction, and processing to be of value. And collecting data is just the start of the journey,
as that data must also be stored, mined, and then exposed to others in a value-added form.

With this book, you will learn many of the core tasks needed in collecting various forms of
information from websites. We will cover how to collect it, how to perform several common
data operations (including storage in local and remote databases), how to perform common
media-based tasks such as converting images an videos to thumbnails, how to clean
unstructured data with NTLK, how to examine several data mining and visualization tools,
and finally core skills in building a microservices-based scraper and API that can, and will,
be run on the cloud.

Through a recipe-based approach, we will learn independent techniques to solve specific
tasks involved in not only scraping but also data manipulation and management, data
mining, visualization, microservices, containers, and cloud operations. These recipes will
build skills in a progressive and holistic manner, not only teaching how to perform the
fundamentals of scraping but also taking you from the results of scraping to a service
offered to others through the cloud. We will be building an actual web-scraper-as-a-service
using common tools in the Python, container, and cloud ecosystems.

Who this book is for

This book is for those who want to learn to extract data from websites using the process of
scraping and also how to work with various data management tools and cloud services. The
coding will require basic skills in the Python programming language.

The book is also for those who wish to learn about a larger ecosystem of tools for retrieving,
storing, and searching data, as well as using modern tools and Pythonic libraries to create
data APIs and cloud services. You may also be using Docker and Amazon Web Services to
package and deploy a scraper on the cloud.

Preface

What this book covers

Chapter 1, Getting Started with Scraping, introduces several concepts and tools for web
scraping. We will examine how to install and do basic tasks with tools such as requests,
urllib, BeautifulSoup, Scrapy, Phantom]S and Selenium.

Chapter 2, Data Acquisition and Extraction, is based on an understanding of the structure of
HTML and how to find and extract embedded data. We will cover many of the concepts in
the DOM and how to find and extract data using BeautifulSoup, XPath, LXML, and CSS
selectors. We also briefly examine working with Unicode / UTFS.

Chapter 3, Processing Data, teaches you to load and manipulate data in many formats, and
then how to store that data in various data stores (53, MySQL, PostgreSQL, and
ElasticSearch). Data in web pages is represented in various formats, the most common
being HTML, JSON, CSV, and XML We will also examine the use of message queue
systems, primarily AWS SQS, to help build robust data processing pipelines.

Chapter 4, Working with Images, Audio and other Assets, examines the means of retrieving
multimedia items, storing them locally, and also performing several tasks such as OCR,
generating thumbnails, making web page screenshots, audio extraction from videos, and
finding all video URLs in a YouTube playlist.

Chapter 5, Scraping — Code of Conduct, covers several concepts involved in the legality of
scraping, and practices for performing polite scraping. We will examine tools for processing
robots.txt and sitemaps to respect the web host's desire for acceptable behavior. We will
also examine the control of several facets of crawling, such as using delays, containing the
depth and length of crawls, using user agents, and implementing caching to prevent
repeated requests.

Chapter 6, Scraping Challenges and Solutions, covers many of the challenges that writing a
robust scraper is rife with, and how to handle many scenarios. These scenarios are
pagination, redirects, login forms, keeping the crawler within the same domain, retrying
requests upon failure, and handling captchas.

Chapter 7, Text Wrangling and Analysis, examines various tools such as using NLTK for
natural language processing and how to remove common noise words and punctuation. We
often need to process the textual content of a web page to find information on the page that
is part of the text and neither structured/embedded data nor multimedia. This requires
knowledge of using various concepts and tools to clean and understand text.

[2]

Preface

Chapter 8, Searching, Mining, and Visualizing Data, covers several means of searching for
data on the Web, storing and organizing data, and deriving results from the identified
relationships. We will see how to understand the geographic locations of contributors to
Wikipedia, finding relationships between actors on IMDB, and finding jobs on Stack
Overflow that match specific technologies.

Chapter 9, Creating a Simple Data API, teaches us how to create a scraper as a service. We
will create a REST API for a scraper using Flask. We will run the scraper as a service behind
this API and be able to submit requests to scrape specific pages, in order to dynamically
query data from a scrape as well as a local ElasticSearch instance.

Chapter 10, Creating Scraper Microservices with Docker, continues the growth of our scraper
as a service by packaging the service and API in a Docker swarm and distributing requests
across scrapers via a message queuing system (AWS SQS). We will also cover scaling of
scraper instances up and down using Docker swarm tools.

Chapter 11, Making the Scraper as a Service Real, concludes by fleshing out the services crated
in the previous chapter to add a scraper that pulls together various concepts covered earlier.
This scraper can assist in analyzing job posts on StackOverflow to find and compare
employers using specified technologies. The service will collect posts and allow a query to
find and compare those companies.

To get the most out of this book

The primary tool required for the recipes in this book is a Python 3 interpreter. The recipes
have been written using the free version of the Anaconda Python distribution, specifically
version 3.6.1. Other Python version 3 distributions should work well but have not been
tested.

The code in the recipes will often require the use of various Python libraries. These are all
available for installation using pip and accessible using pip install. Wherever required,
these installations will be elaborated in the recipes.

Several recipes require an Amazon AWS account. AWS accounts are available for the first
year for free-tier access. The recipes will not require anything more than free-tier services. A
new account can be created at https://portal.aws.amazon.com/billing/signup.

[3]

https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup

Preface

Several recipes will utilize Elasticsearch. There is a free, open source version available on
GitHub at https://github.com/elastic/elasticsearch, with installation instructions on
that page. Elastic.co also offers a fully capable version (also with Kibana and Logstash)
hosted on the cloud with a 14-day free trial available at http://info.elastic.co (which we
will utilize). There is a version for docker-compose with all x-pack features available at
https://github.com/elastic/stack-docker, all of which can be started with a simple
docker—-compose up command.

Finally, several of the recipes use MySQL and PostgreSQL as database examples and
several common clients for those databases. For those recipes, these will need to be installed
locally. MySQL Community Server is available at https://dev.mysql.com/downloads/
mysql/, and PostgreSQL can be found at https://www.postgresql.org/.

We will also look at creating and using docker containers for several of the recipes. Docker
CE is free and is available at https://www.docker.com/community-edition.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Python-Web-Scraping-Cookbook. We also have other code bundles from
our rich catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

[4]

https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
http://info.elastic.co
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://github.com/elastic/stack-docker
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/Python-Web-Scraping-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This will loop through up to 20 characters and drop them into the sw index with

a document type of people”

A block of code is set as follows:

from elasticsearch import Elasticsearch
import requests
import Jjson

if _ name_ == '__main__ ':
es = Elasticsearch (
[
Any command-line input or output is written as follows:
$ curl

https://elastic:tduhdExunhEWPjSuH7306yLSQR7dc72d3327076cc4daf5528103
cd46a27.us-west—-2.aws.found.io:9243

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

[5]

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[6]

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

Getting Started with Scraping

In this chapter, we will cover the following topics:

e Setting up a Python development environment

¢ Scraping Python.org with Requests and Beautiful Soup
e Scraping Python.org with urllib3 and Beautiful Soup

e Scraping Python.org with Scrapy

e Scraping Python.org with Selenium and Phantom]s

Introduction

The amount of data available on the web is consistently growing both in quantity and in
form. Businesses require this data to make decisions, particularly with the explosive
growth of machine learning tools which require large amounts of data for training. Much
of this data is available via Application Programming Interfaces, but at the same time a lot
of valuable data is still only available through the process of web scraping.

This chapter will focus on several fundamentals of setting up a scraping environment and
performing basic requests for data with several of the tools of the trade. Python is the
programing language of choice for this book, as well as amongst many who build systems
to perform scraping. It is an easy to use programming language which has a very rich
ecosystem of tools for many tasks. If you program in other languages, you will find it easy
to pick up and you may never go back!

Getting Started with Scraping Chapter 1

Setting up a Python development
environment

If you have not used Python before, it is important to have a working development
environment. The recipes in this book will be all in Python and be a mix of interactive
examples, but primarily implemented as scripts to be interpreted by the Python

interpreter. This recipe will show you how to set up an isolated development environment
with virtualenv and manage project dependencies with pip . We also get the code for the
book and install it into the Python virtual environment.

Getting ready

We will exclusively be using Python 3.x, and specifically in my case 3.6.1. While Mac and
Linux normally have Python version 2 installed, and Windows systems do not. So it is
likely that in any case that Python 3 will need to be installed. You can find references for
Python installers at www.python.org.

You can check Python's version with python —-version

~ § python --version
Python 3.6.1 :: Anaconda custom (x86_64)

..5.

pip comes installed with Python 3.x, so we will omit instructions on its
installation. Additionally, all command line examples in this book are run
on a Mac. For Linux users the commands should be identical. On
Windows, there are alternate commands (like dir instead of 1s), but these
alternatives will not be covered.

How to do it...

We will be installing a number of packages with pip. These packages are installed into a
Python environment. There often can be version conflicts with other packages, so a good
practice for following along with the recipes in the book will be to create a new virtual
Python environment where the packages we will use will be ensured to work properly.

[8]

Getting Started with Scraping Chapter 1

Virtual Python environments are managed with the virtualenv tool. This can be installed
with the following command:

~ $ pip install virtualenv

Collecting virtualenv

Using cached virtualenv-15.1.0-py2.py3-none—-any.whl
Installing collected packages: virtualenv
Successfully installed virtualenv-15.1.0

Now we can use virtualenv. But before that let's briefly look at pip. This command
installs Python packages from PyPI, a package repository with literally 10's of thousands of
packages. We just saw using the install subcommand to pip, which ensures a package is
installed. We can also see all currently installed packages with pip list:

~ $ pip list

alabaster (0.7.9)

amgp (1.4.9)
anaconda-client (1.6.0)
anaconda-navigator (1.5.3)
anaconda-project (0.4.1)
aniso8601 (1.3.0)

I've truncated to the first few lines as there are quite a few. For me there are 222 packages
installed.

Packages can also be uninstalled using pip uninstall followed by the package name. I'll
leave it to you to give it a try.

Now back to virtualenv. Using virtualenv is very simple. Let's use it to create an
environment and install the code from github. Let's walk through the steps:

1. Create a directory to represent the project and enter the directory.

~ $ mkdir pywscb
~ $ cd pywscb

2. Initialize a virtual environment folder named env:

pywscb $ virtualenv env

Using base prefix '/Users/michaelheydt/anaconda'

New python executable in /Users/michaelheydt/pywscb/env/bin/python
copying /Users/michaelheydt/anaconda/bin/python =>
/Users/michaelheydt/pywscb/env/bin/python

copying /Users/michaelheydt/anaconda/bin/../lib/libpython3.6m.dylib
=> /Users/michaelheydt/pywscb/env/1lib/libpython3.6ém.dylib
Installing setuptools, pip, wheel...done.

[9]

Getting Started with Scraping Chapter 1

3. This creates an env folder. Let's take a look at what was installed.

pywscb $ 1ls -la env
total 8

drwxr—-xr—x
drwxr—-xr—x
drwxr—-xr—x

michaelheydt staff 204 Jan 18 15:38
michaelheydt staff 102 Jan 18 15:35 ..
michaelheydt staff 544 Jan 18 15:38 bin
drwxr-xr—-x michaelheydt staff 102 Jan 18 15:35 include
drwxr-xr—-x michaelheydt staff 136 Jan 18 15:38 1lib
—-rw-r—-—-r—— 1 michaelheydt staff 60 Jan 18 15:38 pip-
selfcheck.json

Sw e w o
[e)]

4. New we activate the virtual environment. This command uses the content in the
env folder to configure Python. After this all python activities are relative to this
virtual environment.

pywscb $ source env/bin/activate
(env) pywscb $

5. We can check that python is indeed using this virtual environment with the
following command:

(env) pywscb $ which python
/Users/michaelheydt/pywscb/env/bin/python

With our virtual environment created, let's clone the books sample code and take a look at
its structure.

(env) pywscb $ git clone
https://github.com/PacktBooks/PythonWebScrapingCookbook.git

Cloning into 'PythonWebScrapingCookbook'...

remote: Counting objects: 420, done.

remote: Compressing objects: 100% (316/316), done.

remote: Total 420 (delta 164), reused 344 (delta 88), pack-reused O
Receiving objects: 100% (420/420), 1.15 MiB | 250.00 KiB/s, done.
Resolving deltas: 100% (164/164), done.

Checking connectivity... done.

This created a PythonWebScrapingCookbook directory.

(env) pywscb $ 1ls -1

total O

drwxr-xr-x 9 michaelheydt staff 306 Jan 18 16:21 PythonWebScrapingCookbook
drwxr-xr-x 6 michaelheydt staff 204 Jan 18 15:38 env

[10]

Getting Started with Scraping Chapter 1

Let's change into it and examine the content.

(env) PythonWebScrapingCookbook $ 1s -1

total O

drwxr-xr-x 15 michaelheydt staff 510 Jan 18 16:21 py
drwxr-xr-x 14 michaelheydt staff 476 Jan 18 16:21 www

There are two directories. Most the the Python code is is the py directory. www contains
some web content that we will use from time-to-time using a local web server. Let's look at
the contents of the py directory:

(env) py $ 1s -1

total O

drwxr-xr-x 9 michaelheydt staff 306 Jan 18 16:21 01
drwxr-xr-x 25 michaelheydt staff 850 Jan 18 16:21 03
drwxr-xr-x 21 michaelheydt staff 714 Jan 18 16:21 04
drwxr-xr-x 10 michaelheydt staff 340 Jan 18 16:21 05
drwxr-xr-x 14 michaelheydt staff 476 Jan 18 16:21 06
drwxr-xr-x 25 michaelheydt staff 850 Jan 18 16:21 07
drwxr-xr-x 14 michaelheydt staff 476 Jan 18 16:21 08
drwxr-xr-x 7 michaelheydt staff 238 Jan 18 16:21 09
drwxr-xr-x 7 michaelheydt staff 238 Jan 18 16:21 10
drwxr-xr-x 9 michaelheydt staff 306 Jan 18 16:21 11
drwxr-xr-x 8 michaelheydt staff 272 Jan 18 16:21 modules

Code for each chapter is in the numbered folder matching the chapter (there is no code for
chapter 2 as it is all interactive Python).

Note that there is a modules folder. Some of the recipes throughout the book use code in
those modules. Make sure that your Python path points to this folder. On Mac and Linux
you can sets this in your .bash_profile file (and environments variables dialog on
Windows):

export
PYTHONPATH="/users/michaelheydt/dropbox/packt/books/pywebscrcookbook/code/p
y/modules"

export PYTHONPATH

The contents in each folder generally follows a numbering scheme matching the sequence of
the recipe in the chapter. The following is the contents of the chapter 6 folder:

(env) py $ 1ls —-la 06

total 96

drwxr-xr-x 14 michaelheydt staff 476 Jan 18 16:21

drwxr-xr-x 14 michaelheydt staff 476 Jan 18 16:26 ..

—rw—r——r—— 1 michaelheydt staff 902 Jan 18 16:21 01_scrapy_retry.py
—-rw—r——r—— 1 michaelheydt staff 656 Jan 18 16:21 02_scrapy_redirects.py

[11]

Getting Started with Scraping

Chapter 1

—rw-r—-—-r—-— 1 michaelheydt staff
—-rw-r-—-r—-— 1 michaelheydt staff
—-rw-r-—-r—-— 1 michaelheydt staff
—rw-r—-—-r—-— 1 michaelheydt staff
—rw-r-—-r—-— 1 michaelheydt staff
07_scrape_continuous_twitter.py

—-rw-r-—-r—-— 1 michaelheydt staff
—rw-r-—-r—-— 1 michaelheydt staff
—rw-r-—-r—-— 1 michaelheydt staff
—-rw-r-—-r—-— 1 michaelheydt staff
—rw-r-—-r—-— 1 michaelheydt staff

1129 Jan 18 16:21
488 Jan 18 16:21
580 Jan 18 16:21
826 Jan 18 16:21
704 Jan 18 16:21

1409 Jan 18 16:21
526 Jan 18 16:21
1537 Jan 18 16:21
597 Jan 18 16:21
1279 Jan 18 16:21

12_parse_differently_based_on_rules.py

03_scrapy_pagination.py
04_press_and_wait.py
05_allowed_domains.py
06_scrapy_continuous.py

08_limit_depth.py
09_limit_length.py
10_forms_auth.py
11_file_cache.py

In the recipes I'll state that we'll be using the script in <chapter directory>/<recipe

filename>.

Congratulations, you've now got a Python environment configured with
the books code!

Now just the be complete, if you want to get out of the Python virtual environment, you can
exit using the following command:

(env) py $ deactivate

py $

And checking which python we can see it has switched back:

py $ which python
/Users/michaelheydt/anaconda/bin/python

I won't be using the virtual environment for the rest of the book. When

you see command prompts they will be either of the form "<directory> $

or simply "$".

Now let's move onto doing some scraping.

"

[12]

Getting Started with Scraping Chapter 1

Scraping Python.org with Requests and
Beautiful Soup

In this recipe we will install Requests and Beautiful Soup and scrape some content from
www.python.org. We'll install both of the libraries and get some basic familiarity with
them. We'll come back to them both in subsequent chapters and dive deeper into each.

Getting ready...

In this recipe, we will scrape the upcoming Python events from https://www.python.org/
events/pythonevents. The following is an an example of The Python.org Events Page
(it changes frequently, so your experience will differ):

@ Our Events | Python.org

& C 1{} | & Python Software Foundation [US] | https://www.python.org/events/python-events/

Python

e python’

About Downloads Documentation Community Success Stories News Events

Python Event

from the Python Events Calendar L
Subscriptions

. Subscribe to Python Event
Upcoming Events

Calendars:

22 Jan. - 24 Jan. PyCascades 2018 _
Events in iCal format

Granville Island Stage, 1585 Johnston St, Vancouver, BC V6H 3R9, Canada
Python Events

24 Jan. - 29 Jan. PyCon Cameroon 2018 Calendars

Limbe, Cameroon
For Python events near you,

03 Feb. - 05 Feb. FOSDEM 2018 please have a look at the
ULE Campus du Solbosch, Av. F. D. Roosevelt 50, 1050 Bruxelles, Belgium Python events map.
08tk 12 Eoh PvCon Pune 2018 The Python events calendars

[13]

https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents
https://www.python.org/events/pythonevents

Getting Started with Scraping Chapter 1

We will need to ensure that Requests and Beautiful Soup are installed. We can do that with
the following:

pywscb $ pip install requests
Downloading/unpacking requests

Downloading requests-2.18.4-py2.py3-none—any.whl (88kB): 88kB downloaded
Downloading/unpacking certifi>=2017.4.17 (from requests)

Downloading certifi-2018.1.18-py2.py3-none—-any.whl (151kB): 151kB
downloaded
Downloading/unpacking idna>=2.5,<2.7 (from requests)

Downloading idna-2.6-py2.py3-none-any.whl (56kB): 56kB downloaded
Downloading/unpacking chardet>=3.0.2,<3.1.0 (from requests)

Downloading chardet-3.0.4-py2.py3-none-any.whl (133kB): 133kB downloaded
Downloading/unpacking urllib3>=1.21.1,<1.23 (from requests)

Downloading urllib3-1.22-py2.py3-none-any.whl (132kB): 132kB downloaded
Installing collected packages: requests, certifi, idna, chardet, urllib3
Successfully installed requests certifi idna chardet urllib3
Cleaning up...
pywscb $ pip install bs4
Downloading/unpacking bs4

Downloading bs4-0.0.1.tar.gz

Running setup.py (path:/Users/michaelheydt/pywscb/env/build/bs4/setup.py)
egg_info for package bs4

How to do it...

Now let's go and learn to scrape a couple events. For this recipe we will start by using
interactive python.

1. Start it with the ipython command:

$ ipython

Python 3.6.1 |Anaconda custom (x86_64)| (default, Mar 22 2017,
19:25:17)

Type "copyright", "credits" or "license" for more information.
IPython 5.1.0 —-- An enhanced Interactive Python.

? —> Introduction and overview of IPython's features.
$quickref -> Quick reference.

help —-> Python's own help system.

object? -> Details about 'object', use 'object??' for extra
details.

In [1]:

[14]

Getting Started with Scraping Chapter 1

2. Next we import Requests
In [1]: import requests

3. We now use requests to make a GET HTTP request for the following url: https:/
/www.python.org/events/python-events/ by making a GET request:

In [2]: url 'https://www.python.org/events/python-events/'
In [3]: req = requests.get (url)

4. That downloaded the page content but it is stored in our requests object req. We
can retrieve the content using the . text property. This prints the first 200
characters.

req.text[:200]

Out[4]: '<!doctype html>\n<!--[if 1t IE 7]> <html class="no-js ie6
lt-ie7 1lt-ie8 1lt-ie9"> <! [endif]-->\n<!—--[if IE 7]> <html
class="no-js ie7 lt-ie8 1lt—-ie9"> <![endif]-->\n<!-—[if IE 8]> <h'

We now have the raw HTML of the page. We can now use beautiful soup to parse the
HTML and retrieve the event data.

1. First import Beautiful Soup
In [5]: from bs4 import BeautifulSoup

2. Now we create a BeautifulSoup object and pass it the HTML.
In [6]: soup = BeautifulSoup(reg.text, 'lxml')

3. Now we tell Beautiful Soup to find the main tag for the recent events, and
then to get all the <1i> tags below it.

In [7]: events = soup.find('ul', {'class': 'list-recent-
events'}) .findAl1l('1i")

4. And finally we can loop through each of the <1i> elements, extracting the event
details, and print each to the console:

In [13]: for event in events:
: event_details = dict ()
. : event_details['name'] = event_details['name'] =
event.find('h3').find("a") .text
: event_details['location'] = event.find('span', {'class',
'event—-location'}) .text
: event_details['time'] = event.find('time') .text

[15]

https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/
https://www.python.org/events/python-events/

Getting Started with Scraping Chapter 1

print (event_details)

{'name': 'PyCascades 2018', 'location': 'Granville Island Stage,

1585 Johnston St, Vancouver, BC V6H 3R9, Canada', 'time': '22 Jan.
— 24 Jan. 2018'}

{'name': 'PyCon Cameroon 2018', 'location': 'Limbe, Cameroon',
'time': '24 Jan. - 29 Jan. 2018'}

{'"name': 'FOSDEM 2018', 'location': 'ULB Campus du Solbosch, Av. F.
D. Roosevelt 50, 1050 Bruxelles, Belgium', 'time': '03 Feb. - 05
Feb. 2018'}

{'name': 'PyCon Pune 2018', 'location': 'Pune, India', 'time': '08
Feb. — 12 Feb. 2018'}

{'name': 'PyCon Colombia 2018', 'location': 'Medellin, Colombia',
'time': '09 Feb. - 12 Feb. 2018'}

{'name': 'PyTennessee 2018', 'location': 'Nashville, TN, USA',
'time': '10 Feb. - 12 Feb. 2018'}

This entire example is available in the 01/01_events_with_requests.py script file. The
following is its content and it pulls together all of what we just did step by step:

import requests
from bs4 import BeautifulSoup

def get_upcoming_events (url):
req = requests.get (url)

soup = BeautifulSoup(req.text, 'lxml')
events = soup.find('ul', {'class': 'list-recent-events'}).findAll('1li")

for event in events:

event_details = dict ()

event_details['name'] = event.find('h3').find("a") .text

event_details['location'] = event.find('span', {'class', 'event-
location'}) .text

event_details['time'] = event.find('time') .text

print (event_details)

get_upcoming_events ('https://www.python.org/events/python-events/")

[16]

Getting Started with Scraping Chapter 1

You can run this using the following command from the terminal:

$ python 01_events_with_requests.py

{'name': 'PyCascades 2018', 'location': 'Granville Island Stage, 1585
Johnston St, Vancouver, BC V6H 3R9, Canada', 'time': '22 Jan. - 24 Jan.
2018'}

{'name': 'PyCon Cameroon 2018', 'location': 'Limbe, Cameroon', 'time': '24
Jan. — 29 Jan. 2018'}

{'name': 'FOSDEM 2018', 'location': 'ULB Campus du Solbosch, Av. F. D.
Roosevelt 50, 1050 Bruxelles, Belgium', 'time': '03 Feb. - 05 Feb. 2018'}
{'name': 'PyCon Pune 2018', 'location': 'Pune, India', 'time': '08 Feb. - 12
Feb. 2018'}

{'name': 'PyCon Colombia 2018', 'location': 'Medellin, Colombia', 'time':
'09 Feb. - 12 Feb. 2018'}

{'name': 'PyTennessee 2018', 'location': 'Nashville, TN, USA', 'time': '10

Feb. — 12 Feb. 2018'}

How it works...

We will dive into details of both Requests and Beautiful Soup in the next chapter, but for
now let's just summarize a few key points about how this works. The following important
points about Requests:

e Requests is used to execute HTTP requests. We used it to make a GET verb
request of the URL for the events page.

¢ The Requests object holds the results of the request. This is not only the page
content, but also many other items about the result such as HTTP status codes
and headers.

* Requests is used only to get the page, it does not do an parsing.

We use Beautiful Soup to do the parsing of the HTML and also the finding of content within
the HTML.

[17]

Getting Started with Scraping Chapter 1

To understand how this worked, the content of the page has the following HTML to start
the Upcoming Events section:

*

(] Q @ Python Software Foundation [US] | https://www.python.org/events/

@ Our Events | Python.org

&«

Python [w ﬂ Elements Console > iX
v <div class="container">
events'> == $0
v <div class="shrubbery"=>
ity Success Stories
Community uccess Stories News Event: events menu"s
v

v <section class="main-content
< ' pgthon Q\ _ - with-right-sidebar” role="main">
About Downloads Documentation »<h2 class="widget-title"-..
</h2>
v <h3 class="event-title">
<a href="/events/

v <div class-"most-recent—
v<ul class="list-recent-
python-events/543/">

Upcomin Events Python Event PyCascades 2018
Subscriptions </h3>
22Jan.-2a4an, PyCascades 2018 P > <poocip>
. Subscribe to Python </1i>
Granville Island Stage, 1585 Johnston St, Vancouver, BC
Event Calendars: Wy div.most-recent-events [el\VE=IT(Vele-TaV N P

V6H 3R9, Canada

Puthon Events Styles Computed Event Listeners »

PyCon Cameroon 2018
Calendars Filter thov .cls +

24 Jan. - 29 Jan.

Limbe, Cameroon

We used the power of Beautiful Soup to:
¢ Find the element representing the section, which is found by looking for a
 with the a class attribute that has a value of 1ist-recent-events.

e From that object, we find all the <1i> elements.

Each of these <1i> tags represent a different event. We iterate over each of those making a
dictionary from the event data found in child HTML tags:

¢ The name is extracted from the <a> tag that is a child of the <h3> tag
o The location is the text content of the with a class of event-location
¢ And the time is extracted from the datet ime attribute of the <time> tag.

[18]

Getting Started with Scraping Chapter 1

Scraping Python.org in urllib3 and Beautiful
Soup

In this recipe we swap out the use of requests for another library ur11ib3. This is another
common library for retrieving data from URLs and for other functions involving URLs such
as parsing of the parts of the actual URL and handling various encodings.

Getting ready...

This recipe requires ur11ib3 installed. So install it with pip:

$ pip install urllib3

Collecting urllib3

Using cached urllib3-1.22-py2.py3-none-any.whl
Installing collected packages: urllib3
Successfully installed urllib3-1.22

How to do it...

The recipe is implemented in 01/02_events_with_urllib3.py. The code is the
following;:

import urllib3
from bs4 import BeautifulSoup

def get_upcoming_events (url) :
req = urllib3.PoolManager ()
res = req.request ('GET', url)
soup = BeautifulSoup(res.data, 'html.parser')

events = soup.find('ul', {'class': 'list-recent-events'}).findAll('1li")

for event in events:

event_details = dict ()

event_details['name'] = event.find('h3').find("a") .text

event_details['location'] = event.find('span', {'class', 'event-
location'}) .text

event_details['time'] = event.find('time') .text

print (event_details)

get_upcoming_events ('https://www.python.org/events/python-events/")

[19]

Getting Started with Scraping Chapter 1

The run it with the python interpreter. You will get identical output to the previous recipe.

How it works

The only difference in this recipe is how we fetch the resource:

req = urllib3.PoolManager ()
res = reqg.request ('GET', url)

Unlike Requests, url1ib3 doesn't apply header encoding automatically. The reason why
the code snippet works in the preceding example is because BS4 handles encoding
beautifully. But you should keep in mind that encoding is an important part of scraping. If
you decide to use your own framework or use other libraries, make sure encoding is well
handled.

There's more...

Requests and urllib3 are very similar in terms of capabilities. it is generally recommended to
use Requests when it comes to making HTTP requests. The following code example
illustrates a few advanced features:

import requests

builds on top of urllib3's connection pooling

session reuses the same TCP connection if

requests are made to the same host

see https://en.wikipedia.org/wiki/HTTP_persistent_connection for details
session = requests.Session()

HH= H =

You may pass in custom cookie

r = session.get ('http://httpbin.org/get', cookies={'my-cookie': 'browser'})
print (r.text)
'{"cookies": {"my-cookie": "test cookie"}}'

Streaming is another nifty feature

From
http://docs.python-requests.org/en/master/user/advanced/#streaming-requests
copyright belongs to reques.org

r = requests.get ('http://httpbin.org/stream/20', stream=True)

[20]

Getting Started with Scraping Chapter 1

for line in r.iter_lines{():
filter out keep-alive new lines
if line:
decoded_line = line.decode ('utf-8")
print (json.loads (decoded_line))

Scraping Python.org with Scrapy

Scrapy is a very popular open source Python scraping framework for extracting data. It was
originally designed for only scraping, but it is has also evolved into a powerful web
crawling solution.

In our previous recipes, we used Requests and urllib2 to fetch data and Beautiful Soup to
extract data. Scrapy offers all of these functionalities with many other built-in modules and
extensions. It is also our tool of choice when it comes to scraping with Python.

Scrapy offers a number of powerful features that are worth mentioning;:

e Built-in extensions to make HTTP requests and handle compression,
authentication, caching, manipulate user-agents, and HTTP headers

e Built-in support for selecting and extracting data with selector languages such as
CSS and XPath, as well as support for utilizing regular expressions for selection
of content and links

¢ Encoding support to deal with languages and non-standard encoding
declarations

e Flexible APIs to reuse and write custom middleware and pipelines, which
provide a clean and easy way to implement tasks such as automatically
downloading assets (for example, images or media) and storing data in storage
such as file systems, S3, databases, and others

Getting ready...

There are several means of creating a scraper with Scrapy. One is a programmatic pattern
where we create the crawler and spider in our code. It is also possible to configure a Scrapy
project from templates or generators and then run the scraper from the command line using
the scrapy command. This book will follow the programmatic pattern as it contains the
code in a single file more effectively. This will help when we are putting together specific,
targeted, recipes with Scrapy.

[21]

Getting Started with Scraping Chapter 1

This isn't necessarily a better way of running a Scrapy scraper than using the command line
execution, just one that is a design decision for this book. Ultimately this book is not about
Scrapy (there are other books on just Scrapy), but more of an exposition on various things

you may need to do when scraping, and in the ultimate creation of a functional scraper as a
service in the cloud.

How to do it...
The script for this recipe is 01/03_events_with_scrapy.py. The following is the code:

import scrapy
from scrapy.crawler import CrawlerProcess

class PythonEventsSpider (scrapy.Spider):
name = 'pythoneventsspider'

start_urls = ['https://www.python.org/events/python-events/"',]
found_events = []

def parse(self, response):

for event in response.xpath('//ul[contains (@class, "list-recent-

events")]/1i"):

event_details = dict ()

event_details['name'] = event.xpath('h3[Q@class="event-—
title"]/a/text () ') .extract_first ()

event_details['location'] = event.xpath('p/span[@class="event-
location"]/text () ') .extract_first ()

event_details['time'] =
event.xpath ('p/time/text () ') .extract_first ()

self.found_events.append(event_details)

if __name_ == "_ _main_ ":
process = CrawlerProcess({ 'LOG_LEVEL': 'ERROR'})
process.crawl (PythonEventsSpider)
spider = next (iter (process.crawlers)) .spider

process.start ()

for event in spider.found_events: print (event)

[22]

Getting Started with Scraping Chapter 1

The following runs the script and shows the output:

~ $ python 03_events_with_scrapy.py

{'name': 'PyCascades 2018', 'location': 'Granville Island Stage, 1585
Johnston St, Vancouver, BC V6H 3R9, Canada', 'time': '22 Jan. - 24 Jan. '}
{'name': 'PyCon Cameroon 2018', 'location': 'Limbe, Cameroon', 'time': '24
Jan. — 29 Jan. '}

{'name': 'FOSDEM 2018', 'location': 'ULB Campus du Solbosch, Av. F. D.
Roosevelt 50, 1050 Bruxelles, Belgium', 'time': '03 Feb. - 05 Feb. '}
{'name': 'PyCon Pune 2018', 'location': 'Pune, India', 'time': '08 Feb. - 12
Feb. '}

{'name': 'PyCon Colombia 2018', 'location': 'Medellin, Colombia', 'time':
'09 Feb. — 12 Feb. '}

{'name': 'PyTennessee 2018', 'location': 'Nashville, TN, USA', 'time': '10
Feb. — 12 Feb. '}

{'name': 'PyCon Pakistan', 'location': 'Lahore, Pakistan', 'time': '16 Dec.
— 17 Dec. '}

{'name': 'PyCon Indonesia 2017', 'location': 'Surabaya, Indonesia', 'time':
'09 Dec. — 10 Dec. '}

The same result but with another tool. Let's go take a quick review of how this works.

How it works

We will get into some details about Scrapy in later chapters, but let's just go through this
code quick to get a feel how it is accomplishing this scrape. Everything in Scrapy revolves
around creating a spider. Spiders crawl through pages on the Internet based upon rules
that we provide. This spider only processes one single page, so it's not really much of a
spider. But it shows the pattern we will use through later Scrapy examples.

The spider is created with a class definition that derives from one of the Scrapy spider
classes. Ours derives from the scrapy.Spider class.

class PythonEventsSpider (scrapy.Spider) :
name = 'pythoneventsspider'

start_urls = ['https://www.python.org/events/python-events/',]

Every spider is given a name, and also one or more start_urls which tell it where to start
the crawling.

This spider has a field to store all the events that we find:

found_events = []

[23]

Getting Started with Scraping Chapter 1

The spider then has a method names parse which will be called for every page the spider
collects.

def parse(self, response):

for event in response.xpath('//ul[contains (Qclass, "list-recent-

events")]/1i'"):

event_details = dict ()

event_details|['name'] = event.xpath('h3[@class="event-
title"]/a/text () ') .extract_first ()

event_details['location'] = event.xpath('p/span[@class="event-—
location"]/text () ') .extract_first ()

event_details['time'] =
event.xpath ('p/time/text () ') .extract_first ()

self.found_events.append(event_details)

The implementation of this method uses and XPath selection to get the events from the page
(XPath is the built in means of navigating HTML in Scrapy). It them builds the
event_details dictionary object similarly to the other examples, and then adds it to the
found_events list.

The remaining code does the programmatic execution of the Scrapy crawler.

process = CrawlerProcess({ 'LOG_LEVEL': 'ERROR'})
process.crawl (PythonEventsSpider)
spider = next (iter (process.crawlers)) .spider

process.start ()

It starts with the creation of a CrawlerProcess which does the actual crawling and a lot of
other tasks. We pass it a LOG_LEVEL of ERROR to prevent the voluminous Scrapy output.
Change this to DEBUG and re-run it to see the difference.

Next we tell the crawler process to use our Spider implementation. We get the actual spider
object from that crawler so that we can get the items when the crawl is complete. And then
we kick of the whole thing by calling process.start ().

When the crawl is completed we can then iterate and print out the items that were found.

for event in spider.found_events: print (event)

This example really didn't touch any of the power of Scrapy. We will look
more into some of the more advanced features later in the book.

[24]

Getting Started with Scraping Chapter 1

Scraping Python.org with Selenium and
PhantomJS

This recipe will introduce Selenium and Phantom]S, two frameworks that are very different
from the frameworks in the previous recipes. In fact, Selenium and Phantom]S are often
used in functional/acceptance testing. We want to demonstrate these tools as they offer
unique benefits from the scraping perspective. Several that we will look at later in the book
are the ability to fill out forms, press buttons, and wait for dynamic JavaScript to be
downloaded and executed.

Selenium itself is a programming language neutral framework. It offers a number of
programming language bindings, such as Python, Java, C#, and PHP (amongst others). The
framework also provides many components that focus on testing. Three commonly used
components are:

e IDE for recording and replaying tests

e Webdriver, which actually launches a web browser (such as Firefox, Chrome, or
Internet Explorer) by sending commands and sending the results to the selected
browser

e A grid server executes tests with a web browser on a remote server. It can run
multiple test cases in parallel.

Getting ready

First we need to install Selenium. We do this with our trusty pip:

~ $ pip install selenium
Collecting selenium
Downloading selenium-3.8.1-py2.py3—-none—any.whl (942kB)

100y | NN 0c2kB 236kB/s

Installing collected packages: selenium
Successfully installed selenium-3.8.1

This installs the Selenium Client Driver for Python (the language bindings). You can find
more information on it at https://github.com/SeleniumdQ/selenium/blob/master/py/
docs/source/index. rst if you want to in the future.

For this recipe we also need to have the driver for Firefox in the directory (it's named
geckodriver). This file is operating system specific. I've included the file for Mac in the
folder. To get other versions, visit https://github.com/mozilla/geckodriver/releases.

[25]

https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/SeleniumHQ/selenium/blob/master/py/docs/source/index.rst
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases

Getting Started with Scraping Chapter 1

Still, when running this sample you may get the following error:

FileNotFoundError: [Errno 2] No such file or directory: 'geckodriver'

If you do, put the geckodriver file somewhere on your systems PATH, or add the 01 folder
to your path. Oh, and you will need to have Firefox installed.

Finally, it is required to have Phantom]S installed. You can download and find installation
instructions at: http://phantomjs.org/

How to do it...

The script for this recipe is 01/04_events_with_selenium.py.
1. The following is the code:
from selenium import webdriver

def get_upcoming_events (url):
driver = webdriver.Firefox ()
driver.get (url)

events = driver.find_elements_by_xpath('//ul[contains (@class, "list-
recent-events")]/11i")

for event in events:

event_details = dict ()

event_details['name'] =
event.find_element_by_xpath('h3[Q@class="event-title"]/a') .text

event_details['location'] =
event.find_element_by_xpath('p/span[@class="event-location"]"') .text

event_details['time'] = event.find_element_by_xpath('p/time') .text

print (event_details)

driver.close ()

get_upcoming_events ('https://www.python.org/events/python-events/")

[26]

http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/
http://phantomjs.org/

Getting Started with Scraping Chapter 1

2. And run the script with Python. You will see familiar output:

~ $ python 04_events_with_selenium.py

{'name': 'PyCascades 2018', 'location': 'Granville Island Stage, 1585
Johnston St, Vancouver, BC V6H 3R9, Canada', 'time': '22 Jan. - 24 Jan.'}
{'name': 'PyCon Cameroon 2018', 'location': 'Limbe, Cameroon', 'time': '24
Jan. — 29 Jan.'}

{'name': 'FOSDEM 2018', 'location': 'ULB Campus du Solbosch, Av. F. D.
Roosevelt 50, 1050 Bruxelles, Belgium', 'time': '03 Feb. - 05 Feb.'}
{'name': 'PyCon Pune 2018', 'location': 'Pune, India', 'time': '08 Feb. - 12
Feb.'}

{'name': 'PyCon Colombia 2018', 'location': 'Medellin, Colombia', 'time':
'09 Feb. — 12 Feb.'}

{'name': 'PyTennessee 2018', 'location': 'Nashville, TN, USA', 'time': '10

Feb. — 12 Feb.'}

During this process, Firefox will pop up and open the page. We have reused the previous
recipe and adopted Selenium.

@ Our Events | Python.org

| @ & & Python Software Foundation (US) | https/fwww.pythor e 7| N o =

Python

e python’ o)

About Downloads Documentation

Community Success Stories News Events

Python Event

from the Python Events Calendar Subscriptions

) Subscribe to Python
) UpCOITIII'lg Events » More Event Calendars:
22 Jan.- 24 Jan. PyCascades 2018 Events in iCal format

Granville Island Stage, 1585 Johnston St, Vancouver, BC V6H 3R9,

The Window Popped up by Firefox

[27]

Getting Started with Scraping Chapter 1

How it works

The primary difference in this recipe is the following code:

driver = webdriver.Firefox ()
driver.get (url)

This gets the Firefox driver and uses it to get the content of the specified URL. This works
by starting Firefox and automating it to go the the page, and then Firefox returns the page
content to our app. This is why Firefox popped up. The other difference is that to find
things we need to call find_element_by_xpath to search the resulting HTML.

There's more...

Phantom]S, in many ways, is very similar to Selenium. It has fast and native support for
various web standards, with features such as DOM handling, CSS selector, JSON, Canvas,
and SVG. It is often used in web testing, page automation, screen capturing, and network
monitoring.

There is one key difference between Selenium and Phantom]S: Phantom]S is headless and
uses WebKit. As we saw, Selenium opens and automates a browser. This is not very good
if we are in a continuous integration or testing environment where the browser is not
installed, and where we also don't want thousands of browser windows or tabs being
opened. Being headless, makes this faster and more efficient.

The example for Phantom]Sisin the 01/05_events_with_phantomjs.py file. Thereis a
single one line change:

driver = webdriver.PhantomJS ('phantomjs')

And running the script results in similar output to the Selenium / Firefox example, but
without a browser popping up and also it takes less time to complete.

[28]

Data Acquisition and Extraction

In this chapter, we will cover:

e How to parse websites and navigate the DOM using BeautifulSoup
¢ Searching the DOM with Beautiful Soup's find methods

¢ Querying the DOM with XPath and Ixml

¢ Querying data with XPath and CSS Selectors

¢ Using Scrapy selectors

¢ Loading data in Unicode / UTF-8 format

Introduction

The key aspects for effective scraping are understanding how content and data are stored
on web servers, identifying the data you want to retrieve, and understanding how the tools
support this extraction. In this chapter, we will discuss website structures and the DOM,
introduce techniques to parse, and query websites with Ixml, XPath, and CSS. We will also
look at how to work with websites developed in other languages and different encoding
types such as Unicode.

Ultimately, understanding how to find and extract data within an HTML document comes
down to understanding the structure of the HTML page, its representation in the DOM, the
process of querying the DOM for specific elements, and how to specify which elements you
want to retrieve based upon how the data is represented.

Data Acquisition and Extraction Chapter 2

How to parse websites and navigate the
DOM using BeautifulSoup

When the browser displays a web page it builds a model of the content of the page in a
representation known as the document object model (DOM). The DOM is a hierarchical
representation of the page's entire content, as well as structural information, style
information, scripts, and links to other content.

It is critical to understand this structure to be able to effectively scrape data from web pages.
We will look at an example web page, its DOM, and examine how to navigate the DOM
with Beautiful Soup.

Getting ready

We will use a small web site that is included in the www folder of the sample code. To follow
along, start a web server from within the www folder. This can be done with Python 3 as
follows:

www $ python3 -m http.server 8080
Serving HTTP on 0.0.0.0 port 8080 (http://0.0.0.0:8080/)

The DOM of a web page can be examined in Chrome by right-clicking the page and
selecting Inspect. This opens the Chrome Developer Tools. Open a browser page to
http://localhost:8080/planets.html. Within chrome you can right click and select
'inspect’ to open developer tools (other browsers have similar tools).

[30]

Data Acquisition and Extraction Chapter 2

0.330 4879 Named Mercurius by the Romans because it appears to move so swiftly.

Roman name for the goddess of love. This planet w

nost beautiful planet or
star in the heavens. Other civilizations have named | 1

4.87 12104 Reload

Save As...

Print...

Cast...

Translate to English

(O AdBlock >
The name Earth comes from the Indo-European bas 4 Create Gist un ‘ertho,’ and
5.97 12756 ultimately German ‘erde,’ Dutch 'aarde, Scandinavie ® Evernote Web Clipper p Orms include Greek
'craze,’ meaning 'on the ground, and Welsh 'erw,’ my @ Fiashcontrol o

© Visits to 127.0.0.1:8080

View Page Source

Named by the Romans for their god of war because of its red, bloodlike color. Other civilizations also named
this planet from this attribute; for example, the Egyptians named it "Her Desher," meaning "the red one."”

0.642 6792

Selecting Inspect on the Page

This opens the developer tools and the inspector. The DOM can be examined in the
Elements tab.

The following shows the selection of the first row in the table:

The name Earth comes from the Indo-European base 'er,'which produced the Germanic noun 'ertho,' and
5.97 12756 ultimately German 'erde,’ Dutch 'aarde,’ Scandinavian 'jord, and English 'earth.' Related forms include Greek
'eraze, meaning 'on the ground, and Welsh 'erw,’ meaning 'a piece of land.'

(w ﬂ Elements Console Sources Network Performance Memory Application » o1 : X
— e
v<p=> Styles Computed Event Listeners >
v<table id="planetsList" border="1">
¥ <tbody> Filter thov .cls +‘
»<tre.</tr> element.style {
»<tr id="planetl” class="planet” name="Mercury">.</tr= }
»<tr id="planet2" class="planet" name="Venus"=.</tr=
tr { user agent stylesheet

v<tr id="planet3” class="planet” name="Earth"-> == $@
»<td>.</td> display: table-row;
vertical-align: inherit;

<td=Earth</td> .)
<td>5.97</td> border-color:» inherit;
<td=12756</td> t
v <td> Inherited from table#planetsList
"The name Earth comes from the Indo-Eurcpean base table { user agent stylesheet
. 'ar "whirh nradurad +hn.|’inr‘m=nir nonun 'arthn ' and white—space: normal:
html body divéwrapper p table#planetsList tbody Big oENEREERE T

Inspecting the First Row

[31]

Data Acquisition and Extraction Chapter 2

Each row of planets is within a <tr> element. There are several characteristics of this
element and its neighboring elements that we will examine because they are designed to
model common web pages.

Firstly, this element has three attributes: id, planet, and name. Attributes are often
important in scraping as they are commonly used to identify and locate data embedded in
the HTML.

Secondly, the <t r> element has children, and in this case, five <td> elements. We will often
need to look into the children of a specific element to find the actual data that is desired.

This element also has a parent element, <tbody>. There are also sibling elements, and the a
set of <tr> child elements. From any planet, we can go up to the parent and find the other
planets. And as we will see, we can use various constructs in the various tools, such as the
find family of functions in Beautiful Soup, and also xPath queries, to easily navigate these
relationships.

How to do it...

This recipe, and most of the others in this chapter, will be presented with iPython in an
interactive manner. But all of the code for each is available in a script file. The code for this
recipeisin 02/01_parsing_html_wtih_bs.py. You can type the following in, or cut and
paste from the script file.

Now let's walk through parsing HTML with Beautiful Soup. We start by loading this page
into a BeautifulSoup object using the following code, which creates a BeautifulSoup
object, loads the content of the page using with requests.get, and loads it into a variable
named soup.

In [1]: import requests
: from bs4 import BeautifulSoup
: html =

requests.get ("http://localhost:8080/planets.html") .text
: soup = BeautifulSoup (html, "lxml")

The HTML in the soup object can be retrieved by converting it to a string (most
BeautifulSoup objects have this characteristic). This following shows the first 1000
characters of the HTML in the document:

In [2]: str(soup) [:1000]
Out [2]: '<html>\n<head>\n</head>\n<body>\n<div
id="planets">\n<hl>Planetary data</hl>\n<div id="content">Here are

[32]

Data Acquisition and Extraction Chapter 2

some interesting facts about the planets in our solar
system</div>\n<p></p>\n<table border="1" id="planetsTable">\n<tr
id="planetHeader">\n<th>\n</th>\n<th>\r\n Name\r\n </th>\n<th>\r\n
Mass (10724kg)\r\n </th>\n<th>\r\n Diameter (km)\r\n
</th>\n<th>\r\n How it got its Name\r\n </th>\n<th>\r\n More
Info\r\n </th>\n</tr>\n<tr class="planet" id="planetl"
name="Mercury">\n<td>\n\n</td>\n<td>\r\n Mercury\r\n
</td>\n<td>\r\n 0.330\r\n </td>\n<td>\r\n 4879\r\n </td>\n<td>Named
Mercurius by the Romans because it appears to move so
swiftly.</td>\n<td>\nWikipedia
\n</td>\n</tr>\n<tr class="p'

We can navigate the elements in the DOM using properties of soup. soup represents the
overall document and we can drill into the document by chaining the tag names. The
following navigates to the <table> containing the data:

In [3]: str(soup.html.body.div.table) [:200]

Out [3]: '<table border="1" id="planetsTable">\n<tr
id="planetHeader">\n<th>\n</th>\n<th>\r\n Name\r\n </th>\n<th>\r\n Mass
(10724kg) \r\n </th>\n<th>\r\n '

The following retrieves the the first child <t r> of the table:

In [6]: soup.html.body.div.table.tr
Out[6]: <tr id="planetHeader">

<th>
</th>
<th>
Name
</th>
<th>
Mass (10724kq)
</th>
<th>
Diameter (km)
</th>
<th>
How it got its Name
</th>
<th>
More Info
</th>
</tr>

[33]

Data Acquisition and Extraction Chapter 2

Note this type of notation retrieves only the first child of that type. Finding more requires
iterations of all the children, which we will do next, or using the find methods (the next
recipe).

Each node has both children and descendants. Descendants are all the nodes underneath a
given node (event at further levels than the immediate children), while children are those
that are a first level descendant. The following retrieves the children of the table, which is
actually a 1ist_iterator object:

In [4]: soup.html.body.div.table.children
Out[4]: <list_iterator at 0x10ebllccO>

We can examine each child element in the iterator using a for loop or a Python generator.
The following uses a generator to get all the children of the and return the first few
characters of their constituent HTML as a list:

In [5]: [str(c)[:45] for c in soup.html.body.div.table.children]
Out [5]:
['\n'l
'<tr id="planetHeader">\n<th>\n</th>\n<th>\r\n ',
l\nl,
'<tr class="planet" id="planetl" name="Mercury',
l\nl,
'<tr class="planet" id="planet2" name="Venus">',
l\nl,
'<tr class="planet" id="planet3" name="Earth">"',
l\nl,
'<tr class="planet" id="planet4" name="Mars">\n',
l\nl,
'<tr class="planet" id="planet5" name="Jupiter',
l\nl,
'<tr class="planet" id="planet6" name="Saturn"',
l\nl,
'<tr class="planet" id="planet7" name="Uranus"',
l\nl,
'<tr class="planet" id="planet8" name="Neptune',
l\nl,
'<tr class="planet" id="planet9" name="Pluto">',
"\n']

Last but not least, the parent of a node can be found using the . parent property:

In [7]: str(soup.html.body.div.table.tr.parent) [:200]

Out[7]: '<table border="1" id="planetsTable">\n<tr
id="planetHeader">\n<th>\n</th>\n<th>\r\n Name\r\n </th>\n<th>\r\n
Mass (10724kg)\r\n </th>\n<th>\r\n '

[34]

Data Acquisition and Extraction Chapter 2

How it works

Beautiful Soup converts the HTML from the page into its own internal representation. This
model has an identical representation to the DOM that would be created by a browser. But
Beautiful Soup also provides many powerful capabilities for navigating the elements in the
DOM, such as what we have seen when using the tag names as properties. These are great
for finding things when we know a fixed path through the HTML with the tag names.

There's more...

This manner of navigating the DOM is relatively inflexible and is highly dependent upon
the structure. It is possible that this structure can change over time as web pages are
updated by their creator(s). The pages could even look identical, but have a completely
different structure that breaks your scraping code.

So how can we deal with this? As we will see, there are several ways of searching for
elements that are much better than defining explicit paths. In general, we can do this using
XPath and by using the find methods of beautiful soup. We will examine both in recipes
later in this chapter.

Searching the DOM with Beautiful Soup's
find methods

We can perform simple searches of the DOM using Beautiful Soup's find methods. These
methods give us a much more flexible and powerful construct for finding elements that are
not dependent upon the hierarchy of those elements. In this recipe we will examine several
common uses of these functions to locate various elements in the DOM.

Getting ready

ff you want to cut and paste the following into ipython, you can find the samples
in02/02_bs4_find.py.

[35]

Data Acquisition and Extraction Chapter 2

How to do it...

We will start with a fresh iPython session and start by loading the planets page:

In [1]: import requests
from bs4 import BeautifulSoup
html = requests.get ("http://localhost:8080/planets.html") .text
soup = BeautifulSoup (html, "lxml")

In the previous recipe, to access all of the <t r> in the table, we used a chained property
syntax to get the table, and then needed to get the children and iterator over them. This
does have a problem as the children could be elements other than <tr>. A more preferred
method of getting just the <t r> child elements is to use findAl1l.

Lets start by first finding the <table>:

In [4]: table = soup.find("table")

str(table) [:100]
Out[4]: '<table border="1" id="planetsTable">\n<tr
id="planetHeader">\n<th>\n</th>\n<th>\r\n Nam'

This tells the soup object to find the first <table> element in the document. From this
element we can find all of the <t r> elements that are descendants of the table with
findAll:

In [8]: [str(tr)[:50] for tr in table.findAll ("tr")]

Oout[8]:

['<tr id="planetHeader">\n<th>\n</th>\n<th>\r\n ',
'<tr class="planet" id="planetl" name="Mercury">\n<t',
'<tr class="planet" id="planet2" name="Venus">\n<td>"',
'<tr class="planet" id="planet3" name="Earth">\n<td>"',
'<tr class="planet" id="planet4" name="Mars">\n<td>\n',
'<tr class="planet" id="planet5" name="Jupiter">\n<t',
'<tr class="planet" id="planet6" name="Saturn">\n<td',
'<tr class="planet" id="planet7" name="Uranus">\n<td',
'<tr class="planet" id="planet8" name="Neptune">\n<t',
'<tr class="planet" id="planet9" name="Pluto">\n<td>"']

Note that these are the descendants and not immediate children. Change
the query to "td" to see the difference. The are no direct children that are
<td>, but each row has multiple <td> elements. In all, there would be 54
<td> elements found.

[36]

Data Acquisition and Extraction Chapter 2

There is a small issue here if we want only rows that contain data for planets. The table
header is also included. We can fix this by utilizing the id attribute of the target rows. The
following finds the row where the value of id is "planet3".

In [14]: table.find("tr", {"id": "planet3"})
Out[14]:
<tr class="planet" id="planet3" name="Earth">
<td>

</td>
<td>
Earth
</td>
<td>
5.97
</td>
<td>
12756
</td>
<td>

The name Earth comes from the Indo-European base
'er, 'which produced the Germanic noun 'ertho,' and ultimately German
'erde, '

Dutch 'aarde,' Scandinavian 'jord,' and English
'earth.' Related forms include Greek 'eraze,' meaning

'on the ground,' and Welsh 'erw,' meaning 'a piece of

land.'
</td>
<td>
Wikipedia
</td>
</tr>

Awesome! We used the fact that this page uses this attribute to represent table rows with
actual data.

Now let's go one step further and collect the masses for each planet and put the name and
mass in a dictionary:

In [18]: items = dict ()
: planet_rows = table.findAll ("tr", {"class": "planet"})
for i in planet_rows:
tds = 1i.findA11l ("td")
items([tds[1l].text.strip()] = tds[2].text.strip()

[371]

Data Acquisition and Extraction Chapter 2

In [19]: items

Out[19]:

{'Earth': '5.97",
'Jupiter': '1898"',
'Mars': '0.642",
'Mercury': '0.330',
'Neptune': '102',
'Pluto': '0.0146"',
'Saturn': '568",
'Uranus': '86.8',
'Venus': '4.87"'}

And just like that we have made a nice data structure from the content embedded within
the page.

Querying the DOM with XPath and Ixml

XPath is a query language for selecting nodes from an XML document and is a must-learn
query language for anyone performing web scraping. XPath offers a number of benefits to
its user over other model-based tools:

¢ Can easily navigate through the DOM tree

* More sophisticated and powerful than other selectors like CSS selectors and
regular expressions

e It has a great set (200+) of built-in functions and is extensible with custom
functions

e It is widely supported by parsing libraries and scraping platforms

XPath contains seven data models (we have seen some of them previously):

e root node (top level parent node)

¢ element nodes (<a>..)

e attribute nodes (href="example.html")
e textnodes ("this is a text")

e comment nodes (<!-- a comment —-->)
* namespace nodes

e processing instruction nodes

[38]

Data Acquisition and Extraction Chapter 2

XPath expressions can return different data types:

e strings

* booleans

e numbers

¢ node-sets (probably the most common case)

An (XPath) axis defines a node-set relative to the current node. A total of 13 axes are
defined in XPath to enable easy searching for different node parts, from the current context
node, or the root node.

Ixml is a Python wrapper on top of the libxmI2 XML parsing library, which is written in C.
The implementation in C helps make it faster than Beautiful Soup, but also harder to install
on some computers. The latest installation instructions are available at: http://1xml.de/
installation.html.

Ixml supports XPath, which makes it considerably easy to manage complex XML and
HTML documents. We will examine several techniques of using Ixml and XPath together,
and how to use Ixml and XPath to navigate the DOM and access data.

Getting ready

The code for these snippets isin 02/03_1xml_and_xpath.py in case you want to save
some typing. We will start by importing html from 1xml, as well as requests, and then
load the page.

In [1]: from 1lxml import html
: import requests
: page_html = requests.get ("http://localhost:8080/planets.html") .text

By this point, Ixml should be installed as a dependency of other installs. If
you get errors, install it with pip install lxml.

How to do it...

The first thing that we do is to load the HTML into an Ixml "etree". This is Ixml's
representation of the DOM.

in [2]: tree = html.fromstring(page_html)

[39]

http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html
http://lxml.de/installation.html

Data Acquisition and Extraction Chapter 2

The tree variable is now an Ixml representation of the DOM which models the HTML
content. Let's now examine how to use it and XPath to select various elements from the
document.

Out first XPath example will be to find all the the <t r> elements below the <table>
element.

In [3]:
Out[3]:
[<Element
<Element
<Element
<Element
<Element
<Element
<Element
<Element
<Element
<Element
<Element

[tr for tr in tree.xpath("/html/body/div/table/tr")]
tr
tr
tr
tr
tr
tr
tr
tr
tr
tr
tr

at
at
at
at
at
at
at
at
at
at
at

0x10cfd1408>,
0x10cfdl12c8>,
0x10cfd1728>,
0x10cfdle6d8>,
0x10cfd1458>,
0x10cfd1868>,
0x10cfd1318>,
0x10cfd14a8>,
0x10cfd10e8>,
0x10cfd1778>,
0x10cfd1638>]

This XPath navigates by tag name from the root of the document down to the <t r>
element. This example looks similar to the property notation from Beautiful Soup, but
ultimately it is significantly more expressive. And notice one difference in the result. All
the the <t r> elements were returned and not just the first. As a matter of fact, the tags at
each level of this path with return multiple items if they are available. If there was multiple
<div> elements just below <body>, then the search for table/tr would be executed on all
of those <div>.

The actual result was an 1xml element object. The following gets the HTML associated
with the elements but using et ree.tostring () (albeit they have encoding applied):

In [4]: from lxml import etree

[etree.tostring (tr) [:50] for tr in
tree.xpath ("/html/body/div/table/tr")]
Out[4]:

[b'<tr id="planetHeader">
\n <th>&#',

b'<tr id="planetl" class="planet" name="Mercury">',
b'<tr id="planet2" class="planet" name="Venus">

A\l

4

b'<tr id="planet3" class="planet" name="Earth">

A\l

4

b'<tr id="planetd4" class="planet" name="Mars">
\n',

b'<tr id="planet5" class="planet" name="Jupiter">',

[40]

Data Acquisition and Extraction Chapter 2

b'<tr id="planet6" class="planet" name="Saturn">"',
b'<tr id="planet7" class="planet" name="Uranus">"',
b'<tr id="planet8" class="planet" name="Neptune">',

b'<tr id="planet9" class="planet" name="Pluto">

v
14

b'<tr id="footerRow">
\n <td>
']

Now let's look at using XPath to select only the <t r> elements that are planets.

In [5]: [etree.tostring(tr)[:50] for tr in
tree.xpath ("/html/body/div/table/tr[@class="planet']")]
Out[5]:

[b'<tr id="planetl" class="planet" name="Mercury">',
b'<tr id="planet2" class="planet" name="Venus">

v
’

b'<tr id="planet3" class="planet" name="Earth">

v
’

b'<tr id="planet4" class="planet" name="Mars">

\n'

b';tr id="planet5" class="planet" name="Jupiter">l',
b'<tr id="planet6" class="planet" name="Saturn">',
b'<tr id="planet7" class="planet" name="Uranus">',
b'<tr id="planet8" class="planet" name="Neptune">',
b'<tr id="planet9" class="planet" name="Pluto">

']

The use of the [] next to a tag states that we want to do a selection based on some criteria
upon the current element. The @ states that we want to examine an attribute of the tag, and
in this cast we want to select tags where the attribute is equal to "planet".

There is also another point to be made out of the query that had 11 <tr> rows. As stated
earlier, the XPath runs the navigation on all the nodes found at each level. There are two
tables in this document, both children of a different <div> that are both a child or the
<body> element. The row with id="planetHeader" came from our desired target table,
the other, with id="footerRow", came from the second table.

Previously we solved this by selecting <t r> with class="row", but there are also other
ways worth a brief mention. The first is that we can also use [] to specify a specific element
at each section of the XPath like they are arrays. Take the following:

In [6]: [etree.tostring(tr)[:50] for tr in
tree.xpath ("/html/body/div[1l]/table/tr")]
Out[o6]:

[b'<tr id="planetHeader">

[41]

Data Acquisition and Extraction

Chapter 2

\n <th>s&#',
b'<tr id="planetl"
b'<tr id="planet2"

v
’

b'<tr id="planet3"

v
’

b'<tr id="planet4"
\n',

b'<tr id="planet5"
b'<tr id="planeto"
b'<tr id="planet7"
b'<tr id="planet8"
b'<tr id="planet9"
']

class="planet"
class="planet"

class="planet"
class="planet"

class="planet"
class="planet"
class="planet"
class="planet"
class="planet"

name="Mercury">"',
name="Venus">

name="Earth">
name="Mars">

name="Jupiter">"',
name="Saturn">"',
name="Uranus">"',
name="Neptune">"',
name="Pluto">

Arrays in XPath start at 1 instead of 0 (a common source of error). This selected the first
<div>. A change to [2] selects the second <div> and hence only the second <table>.

In [7]:

[etree.tostring(tr) [:50]

for tr in

tree.xpath ("/html/body/div[2]/table/tr")]

out[7]:
\n <td>
']

[b'<tr id="footerRow">

The first <div> in this document also has an id attribute:

<div id="planets">

This can be used to select this <div>:

In [8]: [etree.tostring(tr) [:50]

for tr in

tree.xpath ("/html/body/div[@id="planets']/table/tr")]

Out [8]:

[b'<tr id="planetHeader">

\n <th>s&#',
b'<tr id="planetl"
b'<tr id="planet2"

]
’

b'<tr id="planet3"

v
’

b'<tr id="planet4"
\n',

b'<tr id="planet5"
b'<tr id="planeto"
b'<tr id="planet7"
b'<tr id="planet8"
b'<tr id="planet9"
"]

class="planet"
class="planet"

class="planet"
class="planet"

class="planet"
class="planet"
class="planet"
class="planet"
class="planet"

[42]

name="Mercury">"',
name="Venus">

name="Earth">
name="Mars">

name="Jupiter">"',
name="Saturn">"',
name="Uranus">"',
name="Neptune">"',
name="Pluto">

Data Acquisition and Extraction

Chapter 2

Earlier we selected the planet rows based upon the value of the class attribute. We can also
exclude rows:

In [9]:

[etree.tostring(tr) [:50]

for tr in

tree.xpath ("/html/body/div[@id="planets']/table/tr[@id!="'planetHeader']")]

Oout[9]:

[b'<tr
b'<tr

v
’

b'<tr

v
’

b'<tr
\n',
b'<tr
b'<tr
b'<tr
b'<tr
b'<tr

id="planet1"
id="planet2"

id="planet3"
id="planet4"

id="planetb"
id="planet6"
id="planet7"
id="planet8"
id="planet9"

class="planet"
class="planet"

class="planet"
class="planet"

class="planet"
class="planet"
class="planet"
class="planet"
class="planet"

name="Mercury">"',
name="Venus">

name="Earth">
name="Mars">

name="Jupiter">&¢#1"',
name="Saturn">"',
name="Uranus">"',
name="Neptune">&¢#1"',
name="Pluto">

']

Suppose that the planet rows did not have attributes (nor the header row), then we could
do this by position, skipping the first row:

In [10]:
Out [107]:
[b'<tr

b'<tr

v
’

b'<tr

v
’

b'<tr
\n',

b'<tr

b'<tr

b'<tr

b'<tr

b'<tr
']

id="planetl"
id="planet2"

id="planet3"
id="planet4"

id="planetb"
id="planet6"
id="planet7"
id="planet8"
id="planet9"

[etree.tostring(tr) [:50]
tree.xpath ("/html/body/div[@id="planets']/table/tr[position ()

class="planet"
class="planet"

class="planet"
class="planet"

class="planet"
class="planet"
class="planet"
class="planet"
class="planet"

[43]

for tr in

name="Mercury">"',
name="Venus">

name="Earth">
name="Mars">

name="Jupiter">"',
name="Saturn">"',
name="Uranus">"',
name="Neptune">"',
name="Pluto">

> 11")]

Data Acquisition and Extraction Chapter 2

It is possible to navigate to the parent of a node using parent: : *:

In [11]: [etree.tostring(tr) [:50] for tr in
tree.xpath ("/html/body/div/table/tr/parent::*")]
Out[117]:

[b'<table id="planetsTable" border="1">

\n ',

b'<table id="footerTable">

\n <tr id=""']

This returned two parents as, remember, this XPath returns the rows from two tables, so the
parents of all those rows are found. The * is a wild card that represents any parent tags with
any name. In this case, the two parents are both tables, but in general the result can be any
number of HTML element types. The following has the same result, but if the two parents
where different HTML tags then it would only return the <table> elements.

In [12]: [etree.tostring(tr)[:50] for tr in
tree.xpath("/html/body/div/table/tr/parent::table")]
Out[12]:

[b'<table id="planetsTable" border="1">

\n ',

b'<table id="footerTable">

\n <tr id=""']

It is also possible to specify a specific parent by position or attribute. The following selects
the parent with id="footerTable":

In [13]: [etree.tostring(tr) [:50] for tr in

tree.xpath ("/html/body/div/table/tr/parent::table[@id="'footerTable']")]
Out[13]: [b'<table id="footerTable">

\n <tr id=""']

A shortcut for parentis . . (and . also represents the current node):

In [14]: [etree.tostring(tr) [:50] for tr in
tree.xpath ("/html/body/div/table/tr/..")]
Out[14]:

[b'<table id="planetsTable" border="1">

\n ',

b'<table id="footerTable">

\n <tr id=""]

[44]

Data Acquisition and Extraction Chapter 2

And the last example finds the mass of Earth:

In [15]: mass =
tree.xpath ("/html/body/div[l]/table/tr[@name="Earth']/td[3]/text () [1]1")
[0].strip()
: mass
Qut[15]: '5.97"

The trailing portion of this XPath,/td[3] /text () [1], selects the third <td> element in the
row, then the text of that element (which is an array of all the text in the element), and the
first of those which is the mass.

How it works

XPath is a element of the XSLT (eXtensible Stylesheet Language Transformation) standard
and provides the ability to select nodes in an XML document. HTML is a variant of XML,
and hence XPath can work on on HTML document (although HTML can be improperly
formed and mess up XPath parsing in those cases).

XPath itself is designed to model the structure of XML nodes, attributes, and properties. The
syntax provides means of finding items in the XML that match the expression. This can
include matching or logical comparison of any of the nodes, attributes, values, or text in the
XML document.

XPath expressions can be combined to form very complex paths within the
document. It is also possible to navigate the document based upon relative
positions, which helps greatly in finding data based upon relative
positions instead of absolute positions within the DOM.

Understanding XPath is essential for knowing how to parse HTML and perform web
scraping. And as we will see, it underlies, and provides an implementation for, many of the
higher level libraries such as Ixml.

There's more...

XPath is actually an amazing tool for working with XML and HTML documents. It is quite
rich in its capabilities, and we have barely touched the surface of its capabilities for
demonstrating a few examples that are common to scraping data in HTML documents.

[45]

Data Acquisition and Extraction Chapter 2

To learn much more, please visit the following links:

® https://www.w3schools.com/xml/xml_xpath.asp

® https://www.w3.org/TR/xpath/

Querying data with XPath and CSS selectors

CSS selectors are patterns used for selecting elements and are often used to define the
elements that styles should be applied to. They can also be used with Ixml to select nodes in
the DOM. CSS selectors are commonly used as they are more compact than XPath and
generally can be more reusable in code. Examples of common selectors which may be used
are as follows:

What you are looking for Example

All tags *

A specific tag (that is, t r) .planet

A class name (thatis, "planet™) tr.planet
A tag withan ID "planet3" tr#planet3
A child tr of a table table tr
A descendant tr of a table table tr

A tag with an attribute (that is, t r with id="planet4")|alid=Mars]

Getting ready

Let's start examining CSS selectors using the same start up code we used in the last recipe.
These code snippets are also in the 02/04_css_selectors.py.

In [1]: from lxml import html
.: 1lmport requests
: page_html = requests.get ("http://localhost:8080/planets.html") .text
: tree = html.fromstring(page_html)

[46]

https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/

Data Acquisition and Extraction Chapter 2

How to do it...

Now let's start playing with XPath and CSS selectors. The following selects all
<tr> elements with a class equal to "planet":

In [2]: [(v, v.xpath("@name")) for v in tree.cssselect('tr.planet')]
Oout[2]:
[(<Element tr at 0x10d3a2278>,

(<Element tr at 0x10cl6edl8>, Venus']l),

[

[|}
(<Element tr at 0x10e445688>, ['Earth']l),
(<Element tr at 0x10e477228>, ['Mars']),
(<Element tr at 0x10e477408>, ['Jupiter']),
(<Element tr at 0x10e477458>, ['Saturn'l),
(<Element tr at 0x10e4774a8>, ['Uranus']),
(<Element tr at 0x10e4774£f8>, ['Neptune']),
(<Element tr at 0x10e477548>, ['Pluto'])]

Data for the Earth can be found in several ways. The following gets the row based on id:

In [3]: tr = tree.cssselect ("tr#planet3")
: tr[0], tr[0].xpath("./td[2]/text()")[0].strip()

Out [3]: (<Element tr at 0x10e445688>, 'Earth')

The following uses an attribute with a specific value:

In [4]: tr = tree.cssselect ("tr[name='Pluto']")
: tr[0], tr[0].xpath("td[2]/text()")[0].strip()

Out[5]: (<Element tr at 0x10e477548>, 'Pluto')

Note that unlike XPath, the @ symbol need not be used to specify an attribute.

How it works

Ixml converts the CSS selector you provide to XPath, and then performs that XPath
expression against the underlying document. In essence, CSS selectors in Ixml provide a
shorthand to XPath, which makes finding nodes that fit certain patterns simpler than with
XPath.

[47]

Data Acquisition and Extraction Chapter 2

There's more...

Because CSS selectors utilize XPath under the covers, there is overhead to its use as
compared to using XPath directly. This difference is, however, almost a non-issue, and
hence in certain scenarios it is easier to just use cssselect.

A full description of CSS selectors can be found at: https://www.w3.0rg/TR/2011/REC-
css3-selectors—-20110929/

Using Scrapy selectors

Scrapy is a Python web spider framework that is used to extract data from websites. It
provides many powerful features for navigating entire websites, such as the ability to
follow links. One feature it provides is the ability to find data within a document using the
DOM, and using the now, quite familiar, XPath.

In this recipe we will load the list of current questions on StackOverflow, and then parse
this using a scrapy selector. Using that selector, we will extract the text of each question.

Getting ready

The code for this recipe is in 02/05_scrapy_selectors.py.

How to do it...

We start by importing Selector from scrapy, and also requests so that we can retrieve
the page:

In [1]: from scrapy.selector import Selector
: import requests

Next we load the page. For this example we are going to retrieve the most recent questions
on StackOverflow and extract their titles. We can make this query with the the following:

In [2]: response = requests.get ("http://stackoverflow.com/questions™")

[48]

https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://www.w3.org/TR/2011/REC-css3-selectors-20110929/

Data Acquisition and Extraction Chapter 2

Now create a Selector and pass it the response object:

In [3]: selector = Selector (response)
selector

Out [3]: <Selector xpath=None data='<html>\r\n\r\n <head>\r\n\r\n
<title>N'>

Examining the content of this page we can see that questions have the following structure to
their HTML:

v=div class="summary'> == $8

v <h3>
<a href="/questions/48353062/can-not-delete-unselected-dates—from-
array-in-material-calendar-view—-android" class="question-
hyperlink'=Can not delete unSelected dates from array in material
calendar view android</a=

</h3>
»<div class="excerpt">.</div>
»<div class=""tags t-android t-arrays t-calendar t-material”s..</div=
»<div class="started fr'=.</div=>
</div=>
</div=>

The HTML of a StackOverflow Question

With the selector we can find these using XPath:

In [4]: summaries = selector.xpath('//div[Q@class="summary"]/h3"')
summaries[0:5]

Out[4]:

[<Selector xpath='//div[@class="summary"]/h3' data='<h3>,

<Selector xpath='//div[@class="summary"]/h3' data='<h3>,

<Selector xpath='//div[@class="summary"]/h3' data='<h3>,

<Selector xpath='//div[@class="summary"]/h3' data='<h3>,

<Selector xpath='//div[@class="summary"]/h3' data='<h3>]

[49]

Data Acquisition and Extraction Chapter 2

And now we drill a little further into each to get the title of the question.

In [5]: [x.extract() for x in summaries.xpath('a[@class="question-
hyperlink"]/text () ')]1[:10]
Out [5]:

['"How to convert stdout binary file to a data URL?',
'Move first letter from sentence to the end',
'Java launch program and interact with it programmatically',
'"How do I build vala from scratch',
'Running Sgl Script',
'Mysgl - Auto create, update, delete table 2 from table 1°',
'how to map meeting data corresponding calendar time in java',
'Range of L*a* b* in Matlab',
'set maximum and minimum number input box in js,html’',
'T created generic array and tried to store the value but it is
showing ArrayStoreException']

How it works

Underneath the covers, Scrapy builds its selectors on top of Ixml. It offers a smaller and
slightly simpler API, which is similar in performance to Ixml.

There's more...

To learn more about Scrapy Selectors see: https://doc.scrapy.org/en/latest/topics/

selectors.html.

Loading data in unicode / UTF-8

A document's encoding tells an application how the characters in the document are
represented as bytes in the file. Essentially, the encoding specifies how many bits there are
per character. In a standard ASCII document, all characters are 8 bits. HTML files are often
encoded as 8 bits per character, but with the globalization of the internet, this is not always
the case. Many HTML documents are encoded as 16-bit characters, or use a combination of
8- and 16-bit characters.

A particularly common form HTML document encoding is referred to as UTE-8. This is the
encoding form that we will examine.

[50]

https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html
https://doc.scrapy.org/en/latest/topics/selectors.html

Data Acquisition and Extraction

Chapter 2

Getting ready

We will read a file named unicode.html from our local web server, located at
http://localhost:8080/unicode.html. This file is UTF-8 encoded and contains
several sets of characters in different parts of the encoding space. For example, the page
looks as follows in your browser:

Test for Unicode support in Web browsers
CO0 Controls and Basic Latin U+0000 - U+007F (0-127)
! 5 A a
Cyrillic U+0400 — U+04FF (1024-1279)
Jb I 1y B
Hebrew U+0590 - U+05FF (1424-1535)
7} N a Rl
Arabic U+0600 — U+06FF (1536-1791)

4

- T Y

g

The Page in the Browser

Using an editor that supports UTF-8, we can see how the Cyrillic characters are rendered in

the editor:

Cyrillic U+0400 — U+04FF

class="unicode"

valign="top"
width="508"
class="b" width="50"
class="b" width="50"
class="b" width="50"
class="b" width="50"

The HTML in an Editor

(1024-1279)

[51]

Data Acquisition and Extraction Chapter 2

Code for the sample is in 02/06_unicode.py.

How to do it...

We will look at using urlopen and requests to handle HTML in UTF-8. These two
libraries handle this differently, so let's examine this. Let's start importing ur11ib, loading
the page, and examining some of the content.

In [8]: from urllib.request import urlopen
page = urlopen ("http://localhost:8080/unicode.html™")
content = page.read()

content [840:1280]
Out [8]: b'>Cyrillic U+0400 \xe2\x80\x93
U+04FF (1024\xe2\x80\x931279)</p>\n <table
class="unicode">\n <tbody>\n <tr valign="top">\n <td
width="50"> </td>\n <td class="b" width="50">\xd0\x89</td>\n
<td class="b" width="50">\xd0\xa9</td>\n <td class="b"
width="50">\xd1\x89</td>\n <td class="b" width="50">\xd3\x83</td>\n
</tr>\n </tbody>\n </table>\n\n '

Note how the Cyrillic characters were read in as multi-byte codes using \
notation, such as \xd0\x89.

To rectify this, we can convert the content to UTF-8 format using the Python st r statement:

In [9]: str(content, "utf-8")[837:1270]

Out [9]: 'Cyrillic U+0400 - U+04FF
(1024-1279)</p>\n <table class="unicode">\n <tbody>\n <tr
valign="top">\n <td width="50"> </td>\n <td class="b"
width="50">Jb</td>\n <td class="b" width="50">I</td>\n <td
class="b" width="50">m</td>\n <td class="b" width="50">K</td>\n
</tr>\n </tbody>\n </table>\n\n '

Note that the output now has the characters encoded properly.

[52]

Data Acquisition and Extraction Chapter 2

We can exclude this extra step by using requests.

In [9]: import requests
response =

requests.get ("http://localhost:8080/unicode.html") .text
response.text [837:1270]

'Cyrillic U+0400 — U+04FF
(1024-1279)</p>\n <table class="unicode">\n <tbody>\n <tr
valign="top">\n <td width="50"> </td>\n <td class="b"
width="50">Jb</td>\n <td class="b" width="50">II</td>\n <td
class="b" width="50">m</td>\n <td class="b" width="50">K</td>\n
</tr>\n </tbody>\n </table>\n\n '

How it works

In the case of using urlopen, the conversion was explicitly performed by using the str
statement and specifying that the content should be converted to UTF-8. For requests, the
library was able to determine from the content within the HTML that it was in UTF-8
format by seeing the following tag in the document:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

There's more...

There are a number of resources available on the internet for learning about Unicode and
UTF-8 encoding techniques. Perhaps the best is the following Wikipedia article, which has
an excellent summary and a great table describing the encoding technique: https://en.
wikipedia.org/wiki/UTF-8

[53]

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8

Processing Data

In this chapter, we will cover:

e Working with CSV and JSON data
Storing data using AWS S3
Storing data using MySQL

Storing data using PostgreSQL

Storing store data using Elasticsearch
How to build robust ETL pipelines with AWS SQS

Introduction

In this chapter, we will introduce the use of data in JSON, CSV, and XML formats. This will
include the means of parsing and converting this data to other formats, including storing
that data in relational databases, search engines such as Elasticsearch, and cloud storage
including AWS S3. We will also discuss the creation of distributed and large-scale scraping
tasks through the use of messaging systems including AWS Simple Queue Service (SQS).
The goal is to provide both an understanding of the various forms of data you may retrieve
and need to parse, and an instruction the the various backends where you can store the data
you have scraped. Finally, we get a first introduction to one and Amazon Web Service
(AWS) offerings. By the end of the book we will be getting quite heavy into AWS and this
gives a gentle introduction.

Processing Data Chapter 3

Working with CSV and JSON data

Extracting data from HTML pages is done using the techniques in the previous chapter,
primarily using XPath through various tools and also with Beautiful Soup. While we will
focus primarily on HTML, HTML is a variant of XML (eXtensible Markup Language). XML
one was the most popular for of expressing data on the web, but other have become
popular, and even exceeded XML in popularity.

Two common formats that you will see are JSON (JavaScript Object Notation) and CSV
(Comma Separated Values). CSV is easy to create and a common form for many
spreadsheet applications, so many web sites provide data in that for, or you will need to
convert scraped data to that format for further storage or collaboration. JSON really has
become the preferred format, due to its easy within programming languages such as
JavaScript (and Python), and many database now support it as a native data format.

In this recipe let's examine converting scraped data to CSV and JSON, as well as writing the
data to files and also reading those data files from remote servers. The tools we will
examine are the Python CSV and JSON libraries. We will also examine using pandas for
these techniques.

Also implicit in these examples is the conversion of XML data to CSV and
JSON, so we won't have a dedicated section for those examples.

Getting ready

We will be using the planets data page and converting that data into CSV and JSON files.
Let's start by loading the planets data from the page into a list of python dictionary objects.
The following code (found in (03/get_planet_data.py) provides a function that
performs this task, which will be reused throughout the chapter:

import requests
from bs4 import BeautifulSoup

def get_planet_data():
html = requests.get ("http://localhost:8080/planets.html") .text
soup = BeautifulSoup (html, "lxml")

planet_trs = soup.html.body.div.table.findAll ("tr", {"class": "planet"})

def to_dict (tr):

[551]

Processing Data Chapter 3

tds = tr.findAll ("td")
planet_data = dict ()
A}

planet_data['Name'] = tds[l].text.strip/()

planet_datal['Mass'] = tds[2].text.strip/()

planet_data['Radius'] = tds[3].text.strip/()
[1=

planet_datal['Description’ tds[4].text.strip()
planet_data['MoreInfo'] = tds[5].findAll ("a") [0] ["href"].strip()
return planet_data

planets = [to_dict(tr) for tr in planet_trs]
return planets

if _ _name_ == "__main__ ":
print (get_planet_data())

Running the script gives the following output (briefly truncated):

03 S$python get_planet_data.py

[{'"Name': 'Mercury', 'Mass': '0.330', 'Radius': '4879', 'Description'
'Named Mercurius by the Romans because it appears to move so swiftly.',
'MoreInfo': 'https://en.wikipedia.org/wiki/Mercury_ (planet)'}, {'Name'
'Venus', 'Mass': '4.87', 'Radius': '12104', 'Description': 'Roman name for
the goddess of love. This planet was considered to be the brightest and
most beautiful planet or star in thel\r\n heavens. Other civilizations have
named it for their god or goddess of love/war.', 'MoreInfo'
'https://en.wikipedia.org/wiki/Venus'}, {'Name': 'Earth', 'Mass': '5.97"',
'Radius': '12756', 'Description': "The name Earth comes from the Indo-
European base 'er, 'which produced the Germanic noun 'ertho,' and ultimately
German 'erde, '\r\n Dutch 'aarde,' Scandinavian 'jord,' and English 'earth.'
Related forms include Greek 'eraze,' meaning\r\n 'on the ground,' and Welsh

'erw, ' meaning 'a piece of land.'", 'MoreInfo'
'https://en.wikipedia.org/wiki/Earth'}, {'Name': 'Mars', 'Mass': '0.642',
'Radius': '6792', 'Description': 'Named by the Romans for their god of war

because of its red, bloodlike color. Other civilizations also named this
planet\r\n from this attribute; for example, the Egyptians named it "Her
Desher," meaning "the red one."', 'MorelInfo'

It may be required to install csv, json and pandas. You can do that with the following three
commands:

pip install csv
pip install json
pip install pandas

[561]

Processing Data Chapter 3

How to do it

We will start by converting the planets data into a CSV file.

1. This will be performed using csv. The following code writes the planets data to
a CSV file (the code is in03/create_csv.py):

import csv
from get_planet_data import get_planet_data

planets = get_planet_data()

with open('../../www/planets.csv', 'w+', newline='"') as csvFile:
writer = csv.writer (csvFile)
writer.writerow(['Name', 'Mass', 'Radius', 'Description',

'MorelInfo'])
for planet in planets:

writer.writerow([planet['Name'],
planet['Mass'],planet['Radius'], planet|['Description'],
planet['MoreInfo']])

2. The output file is put into the www folder of our project. Examining it we see the
following content::

Name,Mass, Radius,Description,MoreInfo

Mercury, 0.330,4879,Named Mercurius by the Romans because it appears
to move so swiftly.,https://en.wikipedia.org/wiki/Mercury_ (planet)
Venus,4.87,12104,Roman name for the goddess of love. This planet
was considered to be the brightest and most beautiful planet or
star in the heavens. Other civilizations have named it for their
god or goddess of love/war.,https://en.wikipedia.org/wiki/Venus
Earth,5.97,12756, "The name Earth comes from the Indo-European base
'er, 'which produced the Germanic noun 'ertho,' and ultimately
German 'erde,' Dutch 'aarde,' Scandinavian 'jord,' and English
'earth.' Related forms include Greek 'eraze,' meaning 'on the
ground, ' and Welsh 'erw,' meaning 'a piece of
land.'",https://en.wikipedia.org/wiki/Earth

Mars,0.642,6792, "Named by the Romans for their god of war because
of its red, bloodlike color. Other civilizations also named this
planet from this attribute; for example, the Egyptians named it
""Her Desher,"" meaning ""the red

one.""" https://en.wikipedia.org/wiki/Mars

Jupiter,1898,142984,The largest and most massive of the planets was
named Zeus by the Greeks and Jupiter by the Romans; he was the most
important deity in both
pantheons.,https://en.wikipedia.org/wiki/Jupiter

Saturn, 568,120536, "Roman name for the Greek Cronos, father of

[571

Processing Data Chapter 3

Zeus/Jupiter. Other civilizations have given different names to
Saturn, which is the farthest planet from Earth that can be
observed by the naked human eye. Most of its satellites were named
for Titans who, according to Greek mythology, were brothers and
sisters of Saturn.",https://en.wikipedia.org/wiki/Saturn

Uranus, 86.8,51118, "Several astronomers, including Flamsteed and Le
Monnier, had observed Uranus earlier but had recorded it as a fixed
star. Herschel tried unsuccessfully to name his discovery
""Georgian Sidus"" after George III; the planet was named by Johann
Bode in 1781 after the ancient Greek deity of the sky Uranus, the
father of Kronos (Saturn) and grandfather of Zeus

(Jupiter) .",https://en.wikipedia.org/wiki/Uranus
Neptune, 102, 49528, "Neptune was ""predicted"" by John Couch Adams
and Urbain Le Verrier who, independently, were able to account for
the irregularities in the motion of Uranus by correctly predicting
the orbital elements of a trans- Uranian body. Using the predicted
parameters of Le Verrier (Adams never published his predictions),
Johann Galle observed the planet in 1846. Galle wanted to name the
planet for Le Verrier, but that was not acceptable to the
international astronomical community. Instead, this planet is named
for the Roman god of the
sea.",https://en.wikipedia.org/wiki/Neptune
Pluto,0.0146,2370,"Pluto was discovered at Lowell Observatory in
Flagstaff, AZ during a systematic search for a trans-Neptune planet
predicted by Percival Lowell and William H. Pickering. Named after
the Roman god of the underworld who was able to render himself
invisible.",https://en.wikipedia.org/wiki/Pluto

We wrote this file into the www directory so that we can download it with
our web server.

[581]

Processing Data

Chapter 3

Excel:

=]

Home

.Mass
El Mercury 0.33
Ell Venus 4.87
Earth 5.97
0.642
1898
568

102
0.0146

Insert

3. This data can now be used in applications that support CSV content, such as

F° planets.csv - Excel Michael Heydt

Data Review Team

Formulas

Radius Description Morelnfo
4379 Named Mercurius by 1 https://en.wikipedia.org/wiki/Mercury_{planet)
12104 Roman name for the g https://en.wikipedia.org/wiki/Venus
12756 The name Earth come https://en.wikipedia.org/wiki/Earth
6792 Named by the Roman https://en.wikipedia.org/wiki/Mars
142984 The largest and most t https://en.wikipedia.org/wiki/lupiter
120536 Roman name for the C https://en.wikipedia.org/wiki/Saturn
51118 Several astronomers, https://en.wikipedia.org/wiki/Uranus
49528 Neptune was "predict https://en.wikipedia.org/wiki/Neptune
2370 Pluto was discovered https://en.wikipedia.org/wiki/Pluto

planets ® H »

retrieving the

the 03/read_

i

B M -——+ 105

The File Opened in Excel

4. CSV data can also be read from a web server using the csv library and by first

content with requests . The following code is in
csv_from_web.py):

import requests
import csv

planets_data

requests.get ("http://localhost:8080/planets.csv") .text

planets
reader
lines

csv.reader (planets,
[line for line in reader][:-1]
for line in lines:

planets_data.split ('\n'")

delimiter=',', quotechar='"")

print (line)

The following is a portion of the output

["Name',
["Mercury

'Radius', 'Description', 'MoreInfo']
'4879', 'Named Mercurius by the Romans because

'Mass',
'0.330",

v
’

it appears to move so swiftly.',
'https://en.wikipedia.org/wiki/Mercury_ (planet) ']

['Venus',

'4.87', '12104', 'Roman name for the goddess of love.

This planet was considered to be the brightest and most beautiful

planet or
for their

star in the heavens. Other civilizations have named it
god or goddess of love/war.',

'https://en.wikipedia.org/wiki/Venus']

[591]

Processing Data Chapter 3

['"Earth', '5.97', '12756', "The name Earth comes from the Indo-
European base 'er, 'which produced the Germanic noun 'ertho,' and
ultimately German 'erde,' Dutch 'aarde,' Scandinavian 'jord,' and
English 'earth.' Related forms include Greek 'eraze,' meaning 'on
the ground,' and Welsh 'erw,' meaning 'a piece of land.'",
'https://en.wikipedia.org/wiki/Earth']

One thing to point our is that the CSV writer left a trailing blank like
would add an empty list item if not handled. This was handled by slicing
the rows: This following statement returned all lines except the last one:

lines = [line for line in reader][:-1]

5. This can also be done quite easily using pandas. The following constructs a
DataFrame from the scraped data. The code isin 03/create_df_planets.py:

import pandas as pd

planets_df =

pd.read_csv ("http://localhost:8080/planets_pandas.csv",
index_col="'Name')

print (planets_df)

Running this gives the following output:

Description Mass

Radius

Name

Mercury Named Mercurius by the Romans because it appea... 0.330
4879

Venus Roman name for the goddess of love. This plane... 4.87
12104

Earth The name Earth comes from the Indo-European ba... 5.97
12756

Mars Named by the Romans for their god of war becau... 0.642
6792

Jupiter The largest and most massive of the planets wa... 1898
142984

Saturn Roman name for the Greek Cronos, father of Zeu... 568
120536

Uranus Several astronomers, including Flamsteed and L... 86.8
51118

Neptune Neptune was "predicted" by John Couch Adams an... 102
49528

Pluto Pluto was discovered at Lowell Observatory in ... 0.0146
2370

[60]

Processing Data Chapter 3

6. And the DataFrame can be saved to a CSV file with a simple call to . to_csv ()
(codeisin 03/save_csv_pandas.py):

import pandas as pd
from get_planet_data import get_planet_data

construct a data from from the list

planets = get_planet_data()

planets_df = pd.DataFrame (planets) .set_index ('Name')
planets_df.to_csv("../../www/planets_pandas.csv")

7. A CSV file can be read in from a URL very easily with pd.read_csv () - no need
for other libraries. You can use the code in03/read_csv_via_pandas.py):

import pandas as pd

planets_df =

pd.read_csv ("http://localhost:8080/planets_pandas.csv",
index_col="'Name')

print (planets_df)

8. Converting data to JSON is also quite easy. Manipulation of JSON with Python
can be done with the Python json library. This library can be used to convert
Python objects to and from JSON. The following converts the list of planets into
JSON and prints it to the console:prints the planets data as JSON (code in
03/convert_to_json.py):

import json

from get_planet_data import get_planet_data
planets=get_planet_data()

print (json.dumps (planets, indent=4))

Executing this script produces the following output (some of the output is

omitted):
[
{
"Name": "Mercury",
"Mass": "0.330",
"Radius": "4879",
"Description": "Named Mercurius by the Romans because it

appears to move so swiftly.",
"MoreInfo":
"https://en.wikipedia.org/wiki/Mercury_ (planet)"
}I
{

"Name": "Venus",

[61]

Processing Data Chapter 3

"Mass": "4.87",
"Radius": "12104",
"Description": "Roman name for the goddess of love. This

planet was considered to be the brightest and most beautiful planet
or star in the heavens. Other civilizations have named it for their
god or goddess of love/war.",

"MoreInfo": "https://en.wikipedia.org/wiki/Venus"

by

9. And this can also be used to easily save JSON to a file (03/save_as_json.py):

import json

from get_planet_data import get_planet_data

planets=get_planet_data()

with open('../../www/planets.json', 'w+') as jsonFile:
json.dump (planets, JjsonFile, indent=4)

10. Checking the output using 'head -n 13 ../../www/planets.json shows:

"Name": "Mercury",
"Mass": "0.330",
"Radius": "4879",
"Description": "Named Mercurius by the Romans because it
appears to move so swiftly.",
"MoreInfo":
"https://en.wikipedia.org/wiki/Mercury_ (planet)"
}I
{

"Name": "Venus",

"Mass": "4.87",

"Radius": "12104",

"Description": "Roman name for the goddess of love. This

planet was considered to be the brightest and most beautiful planet
or star in the heavens. Other civilizations have named it for their
god or goddess of love/war.",

11. JSON can be read from a web server with requests and converted to a Python
object (03/read_http_json_requests.py):

import requests
import json

planets_request =
requests.get ("http://localhost:8080/planets.json")
print (json.loads (planets_request.text))

[62]

Processing Data Chapter 3

12. pandas also provides JSON capabilities to save to CSV
(03/save_json_pandas.py):

import pandas as pd
from get_planet_data import get_planet_data

planets = get_planet_data()

planets_df = pd.DataFrame (planets) .set_index ('Name')
planets_df.reset_index () .to_json("../../www/planets_pandas.json",
orient="records')

Unfortunately, there is not currently a way to pretty-print the JSON that is output
from .to_7json (). Also note the use of orient="records' and the use of
rest_index (). This is necessary for reproducing an identical JSON structure to
the JSON written using the JSON library example.

13. JSON can be read into a DataFrame using . read_json (), as well as from HTTP
and files (03/read_json_http_pandas.py):

import pandas as pd

planets_df =

pd.read_json ("http://localhost:8080/planets_pandas.json") .set_index
("Name"')

print (planets_df)

How it works

The csv and json libraries are a standard part of Python, and provide a straightforward
means of reading and writing data in both formats.

pandas does not come as standard in some Python distributions and you will likely need to
install it. The pandas functions for both CSV and JSON are also a much higher level in
operation, with many powerful data operations available, and also with support for
accessing data from remote servers.

There's more...

The choice of csv, json, or pandas libraries is yours to make but I tend to like pandas and we
will examine its use in scraping more throughout the book, although we won't get too deep
into its usage.

[63]

Processing Data Chapter 3

For an in-depth understanding of pandas, check out pandas.pydata.org, or pick up my
other book From Packt, Learning pandas, 2ed.

For more info on the csv library, see https://docs.python.org/3/library/csv.html

For more on the json library, see https://docs.python.org/3/library/json.html

Storing data using AWS S3

There are many cases where we just want to save content that we scrape into a local copy
for archive purposes, backup, or later bulk analysis. We also might want to save media from
those sites for later use. I've built scrapers for advertisement compliance companies, where
we would track and download advertisement based media on web sites to ensure proper
usage, and also to store for later analysis, compliance and transcoding.

The storage required for these types of systems can be immense, but with the advent of
cloud storage services such as AWS S3 (Simple Storage Service), this becomes much easier
and more cost effective than managing a large SAN (Storage Area Network) in your own IT
department. Plus, S3 can also automatically move data from hot to cold storage, and then to
long-term storage, such as a glacier, which can save you much more money.

We won't get into all of those details, but simply look at storing our planets.html file into
an S3 bucket. Once you can do this, you can save any content you want to year hearts
desire.

Getting ready

To perform the following example, you will need an AWS account and have access to secret
keys for use in your Python code. They will be unique to your account. We will use the
boto3 library for S3 access. You can install this using pip install boto3. Also, you will
need to have environment variables set to authenticate. These will look like the following:

AWS_ACCESS_KEY_ID=AKIAIDCQSPH3UMWKZEWA
AWS_SECRET_ACCESS_KEY=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

[64]

https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html

Processing Data Chapter 3

These are available in the AWS portal under IAM (Identity Access Management) portion of
the portal.

It's a good practice to put these keys in environment variables. Having
them in code can lead to their theft. During the writing of this book, I had
this hard coded and accidentally checked them in to GitHub. The next
morning I woke up to critical messages from AWS that I had thousands of
servers running! There are GitHub scrapers looking for these keys and
they will get found and use for nefarious purposes. By the time I had
them all turned off, my bill was up to $6000, all accrued overnight.
Thankfully, AWS waived these fees!

How to do it

We won't parse the data in the planets.html file, but simply retrieve it from the local web
server using requests:

1. The following code, (found in 03/53.py), reads the planets web page and stores
it in 53:

import requests
import boto3

data = requests.get ("http://localhost:8080/planets.html") .text

create S3 client, use environment variables for keys
s3 = boto3.client ('s3")

the bucket
bucket_name = "planets-content"

create bucket, set

s3.create_bucket (Bucket=bucket_name, ACL='public-read')

s3.put_object (Bucket=bucket_name, Key='planet.html',
Body=data, ACL="public-read")

2. This app will give you output similar to the following, which is S3 info telling
you various facts about the new item.

{'ETag': '"3ada9dcd8933470221936534abbf7£f3e""',
'ResponseMetadata’': {'HTTPHeaders': {'content-length': '0’',
'date': 'Sun, 27 Aug 2017 19:25:54 GMT',
'etag': '"3ada9dcd8933470221936534abbf7£3e""’,
'server': 'AmazonS3',

[65]

Processing Data Chapter 3

'x—amz-id-2"':
'57BkfScgl6370pldIXgqd7TeTmMy jVPk07cAMNVE7C8jKsb7nRO+0GSbkk LWUBWh81
k+g2nMQOnE=",
'x—amz-request-id': 'D8446EDC6CBA4416"'},
'"HTTPStatusCode': 200,
'"HostId':
'57BkfScgl6370pldIXgqd7TeTmMy jVPk07cAMNVE7C8jKsb7nRO+0GSbkk LWUBWh81
k+g2nMOnE=",
'RequestId': 'D8446EDC6CBA4416"',
'RetryAttempts': 0}}

3. This output shows us that the object was successfully created in the bucket. At
this point, you can navigate to the S3 console and see your bucket:

W# Services v Resource Groups ~ % [\ Michael Heydt v~ Global -

Identify optimal storage classes with $3 Analytics - Storage Class Analysis. Learn More »

Documentation

* Amazon 53 Switch to the old console @4 Discover the new console § Quick tips

Q, Search for buckets

LWL | Delete bucket | | Empty bucket 1 Rogons ©
Bucket name 7= Region 1= Date created 1=
& planets-content US East (N. Virginia) Aug 16, 2017 10:32:54 PM
Operations 0 In progress 1 Success 0 Error

The Bucket in S3

[66]

Processing Data

Chapter 3

4. Inside the bucket you will see the planet .html file:

T Services v Resource Groups v %

Ja\

Michael Heydt ~ Global ~ Supg

Amazon S3 > planets-content

Overview Propertles

Q, Type a prefix and press Enter to search. Press ESC to clear.

[] Name Last modified
B Aug 16, 2017
O planet.html 10:32:55 PM
Operations 0 In progress 1 Success 0 Error
The File in the Bucket

US East (N. Virginia) £

Size

8.8 KB

Viewing 1to 1

Storage class

Standard

Viewing 1to 1

[67]

Processing Data Chapter 3

5. By clicking on the file you can see the property and URL to the file within S3:

Michael Heydt Global ~

Amazon S3 > planets-content

planet.html Latest version v

Overview Propa'tles

‘ Open ‘ ‘ Download ‘ ‘ Download as ‘ ‘ Make public ‘ ‘ Copy path ‘

Owner
scraping

Last modified
Aug 16, 2017 10:32:55 PM

Etag
5f9e9aeaed 75d0fBcae18454a0547ele

Storage class
Standard

Server side encryption
None

Size
9014

Link
https://s3.amazonaws.com/planets-content/planet.html

The Properties of the File in S3

How it works

The boto3 library wraps the AWS 53 APl in a Pythonic syntax. The .client () call
authenticates with AWS and gives us an object to use to communicate with S3. Make sure
you have your keys in environment variables, as otherwise this will not work.

[68]

Processing Data Chapter 3

The bucket name must be globally unique. At the time of writing, this bucket is available,
but you will likely need to change the name. The .create_bucket () call creates the
bucket and sets its ACL. put_object () uses the boto3 upload manager to upload the
scraped data into the object in the bucket.

There's more...

There a lot of details to learn for working with S3. You can find API documentation at:
http://docs.aws.amazon.com/AmazonS3/latest /API/Welcome.html. Boto3 documents can
be found at: nttps://boto3.readthedocs.io/en/latest/.

While we only saved a web page, this model can be used to store any type of file based data
in S3.

Storing data using MySQL

MySQL is a freely available, open source Relational Database Management System
(RDBMS). In this example, we will read the planets data from the website and store it into a
MySQL database.

Getting ready

You will need to have access to a MySQL database. You can install one locally installed, in
the cloud, within a container. I am using a locally installed MySQL server and have the
root password set to mypassword. You will also need to install the MySQL python library.
You can do this with pip install mysgl-connector-python

1. The first thing to do is to connect to the database using the mysgl command at
the terminal:

mysgl -uroot -pmypassword

mysqgl: [Warning] Using a password on the command line interface can
be insecure.

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 4

Server version: 5.7.19 MySQL Community Server (GPL)

Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights
reserved.

[69]

http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/

Processing Data Chapter 3

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysqgl>
2. Now we can create a database that will be used to store our scraped information:

mysgl> create database scraping;
Query OK, 1 row affected (0.00 sec)

3. Now use the new database:

mysgl> use scraping;
Database changed

4. And create a Planets table in the database to store our data:

mysgl> CREATE TABLE "“scraping . planets’ (
“id® INT NOT NULL AUTO_INCREMENT,
‘name’ VARCHAR (45) NOT NULL,
‘mass’ FLOAT NOT NULL,
‘radius® FLOAT NOT NULL,
“description® VARCHAR(5000) NULL,
PRIMARY KEY (' id‘));
Query OK, 0 rows affected (0.02 sec)

Now we are ready to scrape data and put it into the MySQL database.

How to do it

1. The following code (found in 03/store_in_mysqgl.py) will read the planets
data and write it to MySQL:

import mysqgl.connector

import get_planet_data

from mysqgl.connector import errorcode

from get_planet_data import get_planet_data

try:
open the database connection
cnx = mysqgl.connector.connect (user="'root',

[70]

Processing Data Chapter 3

password="mypassword',
host="127.0.0.1",
database="scraping")

insert_sgl = ("INSERT INTO Planets (Name, Mass, Radius,
Description) " +
"VALUES (% (Name)s, % (Mass)s, % (Radius)s,
% (Description)s) ")

get the planet data
planet_data = get_planet_data()

loop through all planets executing INSERT for each with the
cursor
cursor = cnx.cursor ()
for planet in planet_data:
print ("Storing data for %$s" % (planet["Name"]))
cursor.execute (insert_sqgl, planet)

commit the new records
cnx.commit ()

close the cursor and connection
cursor.close ()
cnx.close ()

except mysgl.connector.Error as err:
if err.errno == errorcode.ER_ACCESS_DENIED_ ERROR:
print ("Something is wrong with your user name or password")
elif err.errno == errorcode.ER_BAD_DB_ERROR:
print ("Database does not exist")
else:
print (err)
else:
cnx.close ()

2. This results in the following output:

Storing data for Mercury
Storing data for Venus
Storing data for Earth
Storing data for Mars
Storing data for Jupiter
Storing data for Saturn
Storing data for Uranus
Storing data for Neptune
Storing data for Pluto

[71]

Processing Data Chapter 3

3. Using MySQL Workbench we can see the the records were written to the
database (you could use the mysql command line also):

eoe MySQL Workbench
#& | Local x |
= — =
a5 & SEEEE @ &£ @ OD=a0
Management | Schemas | F aueryl % | F planets | | Contextielp | Snippets
SCHEMAS o+ | WH| ¥ F A [@ | | umitto 1000 rows Bl %<sall « » | (o) %
Q 1 e SELECT * FROM scraping.planets;|
¥ (5 scraping
¥E Tables
@ 100% s o3
» = planets
5 Views ResultGrid | £H 4% Filter Rows: Q Edit: g b B | Exportimport: SR
[P stored Procedures id name mass radius description moreinfo
[Functions 1 Morcury 033 4878 Named Mercurius Dy the Romans because it ap... hitps:en.wikipedia orgiwikiMercury_(planet)
SH o 2 Venus 487 12104 Roman name for the goddess of love. This plan... httpsi/en.wikipedia. orgMikiivenus
3 Earth 597 12756 The name Earnh comes from the Indo-European... hitpsu/en.wikipedia.org/wiki/Earth
a Mars 0842 8792 Named by the Romans for their god of war beca... hitps:/en.wikipedia. orgiwikiMars
5 Jupiter 1888 142884 The largest and most massive of the planels wa... hitps:/en.wikipedia orgiwikillupiter
5 Salum 568 120536 Foman name for the Greek Cronos, father of Ze... hitps:#/en.wikipedia org/iwixi/Satum
7 Uranus 868 51118 Several astronomers, including Flamsteed and... hitps:en.wikipedia orgMwikiUranus
8 Nepune 102 49528 Neptuns was "predicted" by John Couch Adams... hitps:/en.wikipedia.orgiwiki/Neptune
9 Pluo 00146 2370 Pluto was di at Lowell Observatory in F... https:i/en.wikiedia.argiwiki/Pl
| Objectinto | Session
Table: planets planets 3
Columns:
id inl{11) Al PK Action Output &
s varchar(45) Time Action Response Duration { Fetch Time
mass fioat
radivs float © 1 11:04:00 SELECT = FROM scraping.planets LIMIT 0, 1000 36 row(s) returned 0.00043 sec / 0.000..
description varchar(5000) © 2 1108107 TRUNCATE ‘seraping”. planets’ oK 0.000 sec
moreinfo varchar(255) 9 3 11:04:11 SELECT " FROM scraping.planets LIMIT O, 1000 0 row(s) returned 0.00027 sec [0.000..
© 4 11:04:21 SELECT * FROM scraping.planets LIMIT 0, 1000 9 row(s) returned 0.00030 sec [0.000...

Query Completed

Records displayed using MySQL Workbench
4. The following code can be used to retrieve the data (03/read_from_mysql.py):

import mysqgl.connector
from mysgl.connector import errorcode

try:
cnx = mysqgl.connector.connect (user="root', password='mypassword',
host="127.0.0.1", database="scraping")
cursor = cnx.cursor (dictionary=False)

cursor.execute ("SELECT * FROM scraping.Planets")
for row in cursor:
print (row)

close the cursor and connection
cursor.close ()
cnx.close ()

[72]

Processing Data Chapter 3

except mysgl.connector.Error as err:

if err.errno == errorcode.ER_ACCESS_DENIED_ ERROR:
print ("Something is wrong with your user name or password")
elif err.errno == errorcode.ER_BAD_DB_ERROR:
print ("Database does not exist")
else:
print (err)
finally:

cnx.close ()
5. This results in the following output:

(1, 'Mercury', 0.33, 4879.0, 'Named Mercurius by the Romans because
it appears to move so swiftly.',
'https://en.wikipedia.org/wiki/Mercury_ (planet) ')

(2, 'Venus', 4.87, 12104.0, 'Roman name for the goddess of love.
This planet was considered to be the brightest and most beautiful
planet or star in the heavens. Other civilizations have named it
for their god or goddess of love/war.',
'https://en.wikipedia.org/wiki/Venus')

(3, 'Earth', 5.97, 12756.0, "The name Earth comes from the Indo-

European base 'er, 'which produced the Germanic noun 'ertho,' and
ultimately German 'erde,' Dutch 'aarde,' Scandinavian 'Jjord,' and
English 'earth.' Related forms include Greek 'eraze,' meaning 'on
the ground,' and Welsh 'erw,' meaning 'a piece of land.'",

'https://en.wikipedia.org/wiki/Earth')

(4, 'Mars', 0.642, 6792.0, 'Named by the Romans for their god of
war because of its red, bloodlike color. Other civilizations also
named this planet from this attribute; for example, the Egyptians
named it "Her Desher," meaning "the red one."',
'https://en.wikipedia.org/wiki/Mars"')

(5, '"Jupiter', 1898.0, 142984.0, 'The largest and most massive of
the planets was named Zeus by the Greeks and Jupiter by the Romans;
he was the most important deity in both pantheons.',
'https://en.wikipedia.org/wiki/Jupiter")

(6, 'Saturn', 568.0, 120536.0, 'Roman name for the Greek Cronos,
father of Zeus/Jupiter. Other civilizations have given different
names to Saturn, which is the farthest planet from Earth that can
be observed by the naked human eye. Most of its satellites were
named for Titans who, according to Greek mythology, were brothers
and sisters of Saturn.', 'https://en.wikipedia.org/wiki/Saturn')
(7, 'Uranus', 86.8, 51118.0, 'Several astronomers, including
Flamsteed and Le Monnier, had observed Uranus earlier but had
recorded it as a fixed star. Herschel tried unsuccessfully to name
his discovery "Georgian Sidus" after George III; the planet was
named by Johann Bode in 1781 after the ancient Greek deity of the
sky Uranus, the father of Kronos (Saturn) and grandfather of Zeus

[73]

Processing Data Chapter 3

(Jupiter).', 'https://en.wikipedia.org/wiki/Uranus')

(8, 'Neptune', 102.0, 49528.0, 'Neptune was "predicted" by John
Couch Adams and Urbain Le Verrier who, independently, were able to
account for the irregularities in the motion of Uranus by correctly
predicting the orbital elements of a trans—- Uranian body. Using the
predicted parameters of Le Verrier (Adams never published his
predictions), Johann Galle observed the planet in 1846. Galle
wanted to name the planet for Le Verrier, but that was not
acceptable to the international astronomical community. Instead,
this planet is named for the Roman god of the sea.',
'https://en.wikipedia.org/wiki/Neptune')

(9, 'Pluto', 0.0146, 2370.0, 'Pluto was discovered at Lowell
Observatory in Flagstaff, AZ during a systematic search for a
trans-Neptune planet predicted by Percival Lowell and William H.
Pickering. Named after the Roman god of the underworld who was able
to render himself invisible.',
'https://en.wikipedia.org/wiki/Pluto"')

How it works

Accessing a MySQL database using the mysql.connector involves the use of two classes
from the library: connect and cursor. The connect class opens and manages a connection
with the database server. From that connection object, we can create a cursor object. This
cursor is used for reading and writing data using SQL statements.

In the first example, we used the cursor to insert nine records into the database. Those
records are not written to the database until the commit () method of the connection is
called. This executes the writes of all the rows to the database.

Reading data uses a similar model except that we execute an SQL query (SELECT) using the
cursor and iterate across the rows that were retrieved. Since we are reading and not writing,
there is no need to call commit () on the connection.

There's more...

You can learn more about MySQL and install it from:
https://dev.mysql.com/doc/refman/5.7/en/installing.html. Information on
MySQL Workbench is available at: https://dev.mysgl.com/doc/workbench/en/.

[74]

Processing Data Chapter 3

Storing data using PostgreSQL

In this recipe we store our planet data in PostgreSQL. PostgreSQL is an open source
relational database management system (RDBMS). It is developed by a worldwide team of
volunteers, is not controlled by any corporation or other private entity, and the source code
is available free of charge. It has a lot of unique features such as hierarchical data models.

Getting ready

First make sure you have access to a PostgreSQL data instance. Again, you can install one
locally, run one in a container, or get an instance in the cloud.

As with MySQL, we need to first create a database. The process is almost identical to that of
MySQL but with slightly different commands and parameters.

1. From the terminal execute the psql command at the terminal. This takes you into
the psql command processor:

psgl -U postgres
psgl (9.6.4)

Type "help" for help.
postgres=#

2. Now create the scraping database:

postgres=# create database scraping;
CREATE DATABASE
postgres=#

3. Then switch to the new database:

postgres=# \connect scraping
You are now connected to database "scraping" as user "postgres".
scraping=+#

4. Now we can create the Planets table. We first need to create a sequence table:

scraping=# CREATE SEQUENCE public."Planets_id_seq"
scraping—# INCREMENT 1

scraping-# START 1

scraping-# MINVALUE 1

scraping—# MAXVALUE 9223372036854775807
scraping-# CACHE 1;

CREATE SEQUENCE

[75]

Processing Data Chapter 3

scraping=# ALTER SEQUENCE public."Planets_id_seq"
scraping-# OWNER TO postgres;

ALTER SEQUENCE

scraping=#

5. And now we can create the table:

scraping=# CREATE TABLE public."Planets"

scraping—# (

scraping (# id integer NOT NULL DEFAULT

nextval ('"Planets_id_seqg"'::regclass),

scraping (# name text COLLATE pg_catalog."default" NOT NULL,

(
scraping (# mass double precision NOT NULL,
scraping (# radius double precision NOT NULL,
scraping (# description text COLLATE pg_catalog."default" NOT NULL,
scraping (# moreinfo text COLLATE pg_catalog."default" NOT NULL,
scraping (# CONSTRAINT "Planets_pkey" PRIMARY KEY (name)
scraping (#)

scraping—# WITH (

scraping (# OIDS = FALSE

scraping (#)

scraping-# TABLESPACE pg_default;
CREATE TABLE

scraping=+#

scraping=# ALTER TABLE public."Planets"
scraping-# OWNER to postgres;

ALTER TABLE

scraping=# \qgq

To access PostgreSQL from Python we will use the psycopg2 library, so make sure it is
installed in your Python environment using pip install psycopg2.

We are now ready to write Python to store the planets data in PostgreSQL.

How to do it

We proceed with the recipe as follows:

1. The following code will read the planets data and write it to the database (code in
03/save_in_postgres.py):

import psycopg?2
from get_planet_data import get_planet_data

try:

[76]

Processing Data Chapter 3

connect to PostgreSQL
conn = psycopg?2.connect ("dbname="'scraping' host='localhost'
user='postgres' password='mypassword'")

the SQL INSERT statement we will use
insert_sgl = ('INSERT INTO public."Planets" (name, mass, radius,
description, moreinfo) ' +
'"VALUES (% (Name)s, % (Mass)s, % (Radius)s, % (Description)s,
% (MoreInfo)s); ")

open a cursor to access data
cur = conn.cursor ()

get the planets data and loop through each
planet_data = get_planet_data()
for planet in planet_data:

write each record

cur.execute (insert_sqgl, planet)

commit the new records to the database
conn.commit ()
cur.close ()
conn.close ()
print ("Successfully wrote data to the database")
except Exception as ex:
print (ex)
2. If successful you will see the following:

Successfully wrote data to the database

3. Using GUI tools such as pgAdmin you can examine the data within the database:

[77]

Processing Data Chapter 3

00 pgAdmin 4

File ~ Object ~ Tools ~ Help ~

i Browser & Dashboard & Properties [B SQL |+ Statistics 4 Dependencies {3 Dependents % Query - scraping on postgres@Localhost *

& & Catalogs 5 ®m - Q- @& B & Y - ¥ - W Z - &

& Event Triggers = o
& Extensions scraping on postgres ost

1 SELECT * FROM public."Planets”

F’j Foreign Data Wrappers
Languages
& @ Schemas (1)

&€ public
2 Collations
@ Domains Data Output Explain Messages History
@ FTS Coenfigurations id name mass radius description moreinfo
[ill FTs Dictionaries 4 integer text double precision double precision text text
& FTS Parsers 1 1 Mer.. 0.33 4879 Named Mer... hittps://e..
&l FTS Templates 2 2 Venus 4.87 12104 : Roman nam... https://e..
Iz Foreign Tables 3 3 Earth 5.97 12756 The name E.. https://e.
 Functions 4 4 Mars 0.642 6792 Named by t.. https://e..
Materialized Vi
H Malerialized Views 5 5 Jupi.. 1898 142984 The largest ... httpsi//e..
% Sequences
6 6 Sat... 568 120536 Roman nam... https://e..
[T Tables (1)
D Plansts 7 7 Ura.. 86.8 51118 Several astr... https://e..
& Trigger Functions 8 8 Nep. 102 49528 Neptune wa.. https://e.
Types 9 9 Pluto 0.0146 2370 Pluto was di... https://e.
Views

% Login/Group Roles
=3 Tablespaces (2)

Records Displayed in pgAdmin

4. The data can be queried with the following Python code (found in
03/read_from_postgresql.py):

import psycopg?2
try:

conn = psycopg2.connect ("dbname="'scraping' host='localhost'
user='postgres' password='mypassword'")

cur = conn.cursor ()
cur.execute ('SELECT * from public."Planets"')
rows = cur.fetchall ()

print (rows)

cur.close ()
conn.close ()

except Exception as ex:
print (ex)

[78]

Processing Data Chapter 3

5. And results in the following output (truncated a little bit:

[(1, 'Mercury', 0.33, 4879.0, 'Named Mercurius by the Romans
because it appears to move so swiftly.',
'https://en.wikipedia.org/wiki/Mercury_ (planet)'), (2, 'Venus',
4.87, 12104.0, 'Roman name for the goddess of love. This planet was
considered to be the brightest and most beautiful planet or star in
the heavens. Other civilizations have named it for their god or
goddess of love/war.', 'https://en.wikipedia.org/wiki/Venus'), (3,
'Earth', 5.97, 12756.0, "The name Earth comes from the Indo-
European base 'er, 'which produced the Germanic noun 'ertho,' and
ultimately German 'erde,' Dutch 'aarde,' Scandinavian 'Jjord,' and
English 'earth.' Related forms include Greek 'eraze,' meaning 'on
the ground,' and Welsh 'erw,' meaning 'a piece of land.'",
'https://en.wikipedia.org/wiki/Earth'), (4, 'Mars', 0.642, 6792.0,
'Named by the Romans for their god of war because of its red,
bloodlike color. Other civilizations also named this planet from
this attribute; for example, the Egyptians named it

How it works

Accessing a PostgreSQL database using the psycopg2 library as we did involves the use of
two classes from the library: connect and cursor. The connect class opens and manages
a connection with the database server. From that connection object, we can create a cursor
object. This cursor is used for reading and writing data using SQL statements.

In the first example, we used the cursor to insert nine records into the database. Those
records are not written to the database until the commit () method of the connection is
called. This executes the writes of all the rows to the database.

Reading data uses a similar model, except that we execute an SQL query (SELECT) using the
cursor and iterate across the rows that were retrieved. Since we are reading and not
writing, there is no need to call commit () on the connection.

There's more...

Information on PostgreSQL is available at https://www.postgresgl.org/. pgAdmin
can be obtained at: https://www.pgadmin.org/ Reference materials for psycopg are at:
http://initd.org/psycopg/docs/usage.html

[79]

Processing Data Chapter 3

Storing data in Elasticsearch

Elasticsearch is a search engine based on Lucene. It provides a distributed, multitenant-
capable, full-text search engine with an HTTP web interface and schema-free JSON
documents. It is a non-relational database (often stated as NoSQL), focusing on the storage
of documents instead of records. These documents can be many formats, one of which is
useful to us: JSON. This makes using Elasticsearch very simple as we do not need to
convert our data to/from JSON. We will use Elasticsearch much more later in the book

For now, let's go and store our planets data in Elasticsearch.

Getting ready

We will access a locally installed Elasticsearch server. To do this from Python, we will use
the Elasticsearch-py library. It is most likely that you will need to install this using pip:
pip install elasticsearch.

Unlike PostgreSQL and MySQL, we do not need to create tables in Elasticsearch ahead of
time. Elasticsearch does not care about structured data schemas (although it does have
indexes), so we don't have to go through this procedure.

How to do it

Writing data to Elasticsearch is really simple. The following Python code performs this task
with our planets data (03/write_to_elasticsearch.py):

from elasticsearch import Elasticsearch
from get_planet_data import get_planet_data

create an elastic search object
es = Elasticsearch()

get the data
planet_data = get_planet_data()

for planet in planet_data:
insert each planet into elasticsearch server
res = es.index (index='planets', doc_type='planets_info', body=planet)
print (res)

[801]

Processing Data Chapter 3

Executing this results in the following output:

{'_index': 'planets', '_type': 'planets_info', '_id':
'AVAgIF3_T0Z2t9T850g6', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}{'_index':
'planets', '_type': 'planets_info', '_id': 'AV4qgIF5QT0z2t9T850q97"',
'_version': 1, 'result': 'created', '_shards': {'total': 2, 'successful':
1, 'failed': 0}, 'created': True}

{'_index': 'planets', '_type': 'planets_info', '_id':
'AVAgIF5XT0Z22t9T850g8"', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id':
'AVAgIF5fT0Z22t9T850g9"', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id': 'AV4qgIF5mT0Z2t9T850qg—
', '_version': 1, 'result': 'created', '_shards': {'total': 2,
'successful': 1, 'failed': 0}, 'created': True}

{'_index': 'planets', '_type': 'planets_info', '_id':
'AVAgIF5rT0Z22t9T850q_"', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id':
'AV4AgIF50T0Z2t9T850rA"', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id':
'AV4AgIF56T0Z2t9T850rB', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}
{'_index': 'planets', '_type': 'planets_info', '_id':
'AVAqIF6AT0Z2t9T850rC', '_version': 1, 'result': 'created', '_shards':
{'total': 2, 'successful': 1, 'failed': 0}, 'created': True}

The output shows the result of each insertion, giving us information such as the _id
assigned to the document by elasticsearch.

[81]

Processing Data Chapter 3

If you have logstash and kibana installed too, you can see the data inside of Kibana:

. 9 hits New Save Open Share
kl ba na Search... (e.g. status:200 AND extension:PHP) Uses lucene query syntax n
@

Discover Add a filter +
Visualize planets*
Dashboard

Selected Fields

Timelion
? _source

Dev Tools
Available Fields >

Management
_source

¥ HName: Mercury Mass: @.330 Radius: 4879 Description: Named Mercurius by the Romans because it app
ears to move so swiftly. MoreInfo: https://en.wikipedia.org/wiki/Mercury_(planet) _id: AV4qIF3_T@Z
2t9T850q6 _type: planets_info _index: planets _score: 1

Table JSON View single document
+ Description @ @ [0 * Named Mercurius by the Romans because it appears to move so swiftly.
+ Mass @ a @ * 0.330
7 Morelnfo @ % A https://en.wikipedia.org/wiki/Mercury_(planet)
+ Name @ Q @ % Mercury
+ Radius Q QM * 4879
t _id @ qm AV4qIF3_T@Z2t9T850q6
t _index Q QM planets
_score m 1
t _type Q Q@ planets_info

o Collapse

Kibana Showing and Index

And we can query the data with the following Python code. This code retrieves all of the
documents in the "planets' index and prints the name, mass, and radius of each
planet (03/read_from_elasticsearch.py):

from elasticsearch import Elasticsearch

create an elastic search object
es = Elasticsearch()

res = es.search(index="planets", body={"query": {"match_all": {}}})

[82]

Processing Data Chapter 3

print ("Got %d Hits:" % res|['hits']['total'l])
for hit in res['hits']['hits']:
print ("% (Name)s % (Mass)s: % (Radius)s" % hit["_source"])Got 9 Hits:

This results in the following output:

Mercury 0.330: 4879
Mars 0.642: 6792
Venus 4.87: 12104
Saturn 568: 120536
Pluto 0.0146: 2370
Earth 5.97: 12756
Uranus 86.8: 51118
Jupiter 1898: 142984
Neptune 102: 49528

How it works

Elasticsearch is both a NoSQL database and a search engine. You give documents to
Elasticsearch and it parses the data in the documents and creates search indexes for that
data automatically.

During the insertion process, we used the elasticsearch libraries' . index () method and
specified an index, named "planets", a document type, planets_info, and the finally the
body of the document, which is our planet Python object. The elasticsearch library that
object to JSON and sends it off to Elasticsearch for storage and indexing.

The index parameter is used to inform Elasticsearch how to create an index, which it will
use for indexing and which we can use to specify a set of documents to search for when we
query. When we performed the query, we specified the same index "planets" and executed a
query to match all of the documents.

There's more...

You can find out much more about elasticsearch at:
https://www.elastic.co/products/elasticsearch. Information on the python API
can be found at: http://pyelasticsearch.readthedocs.io/en/latest/api/

We will also come back to Elasticsearch in later chapters of the book.

[83]

Processing Data Chapter 3

How to build robust ETL pipelines with AWS
SQS

Scraping a large quantity of sites and data can be a complicated and slow process. But it is
one that can take great advantage of parallel processing, either locally with multiple
processor threads, or distributing scraping requests to report scrapers using a message
queue system. There may also be the need for multiple steps in a process similar to an
Extract, Transform, and Load pipeline (ETL). These pipelines can also be easily built using a
message queuing architecture in conjunction with the scraping.

Using a message queuing architecture gives our pipeline two advantages:

¢ Robustness
e Scalability

The processing becomes robust, as if processing of an individual message fails, then the
message can be re-queued for processing again. So if the scraper fails, we can restart it and
not lose the request for scraping the page, or the message queue system will deliver the
request to another scraper.

It provides scalability, as multiple scrapers on the same, or different, systems can listen on
the queue. Multiple messages can then be processed at the same time on different cores or,
more importantly, different systems. In a cloud-based scraper, you can scale up the number
of scraper instances on demand to handle greater load.

Common message queueing systems that can be used include: Kafka, RabbitMQ, and
Amazon SQS. Our example will utilize Amazon SQS, although both Kafka and RabbitMQ
are quite excellent to use (we will see RabbitMQ in use later in the book). We use SQS to
stay with a model of using AWS cloud-based services as we did earlier in the chapter with
S3.

Getting ready

As an example, we will build a vary simple ETL process that will read the main planets
page and store the planets data in MySQL. It will also pass a single message for each more
info link in the page to a queue, where 0 or more processes can receive those requests and
perform further processing on those links.

To access SQS from Python, we will revisit using the bot o3 library.

[84]

Processing Data Chapter 3

How to do it - posting messages to an AWS
queue

The 03/create_messages.py file contains code to read the planets data and to post the
URL in the Morelnfo property to an SQS queue:

from urllib.request import urlopen
from bs4 import BeautifulSoup

import boto3
import botocore

declare our keys (normally, don't hard code this)
access_key="AKIAIXFTCYO7FELS5TCQ"
access_secret_key="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"”

create sgs client

sgs = boto3.client ('sgs', "us-west-2",
aws_access_key_1id = access_key,
aws_secret_access_key = access_secret_key)

create / open the SQS queue
queue = sgs.create_qgueue (QueueName="PlanetMoreInfo")
print (queue)

read and parse the planets HTML
html = urlopen ("http://127.0.0.1:8080/pages/planets.html")
bsobj = BeautifulSoup (html, "lxml")

planets = []
planet_rows = bsobj.html.body.div.table.findAll ("tr", {"class": "planet"})

for i in planet_rows:
tds = 1i.findAll ("td")
get the URL
more_info_url = tds[5].findAll ("a") [0] ["href"].strip()
send the URL to the queue
sgs.send_message (QueueUrl=queue ["QueueUrl"],
MessageBody=more_info_url)
print ("Sent %s to %s" % (more_info_url, queue["QueueUrl"]))

[85]

Processing Data Chapter 3

Run the code in a terminal and you will see output similar to the following;:

{'QueueUrl':
'https://us-west—-2.queue.amazonaws.com/414704166289/PlanetMoreInfo’,
'ResponseMetadata’': {'RequestId': '2aad7964-292a-5bf6-b838-2b7a5007af22"',
'"HTTPStatusCode': 200, 'HTTPHeaders': {'server': 'Server', 'date': 'Mon, 28
Aug 2017 20:02:53 GMT', 'content-type': 'text/xml', 'content-length':

'336', 'connection': 'keep-alive', 'x-—amzn-requestid': '2aad7964-292a-5bf6-

b838-2b7a5007af22'}, 'RetryAttempts': 0}}

Sent https://en.wikipedia.org/wiki/Mercury_ (planet) to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Venus to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Earth to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Mars to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Jupiter to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Saturn to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Uranus to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Neptune to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Sent https://en.wikipedia.org/wiki/Pluto to
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo

Now go into the AWS SQS console. You should see the queue has been created and that it
holds 9 messages:

,I:‘._ Michael Heydt v Oregon ~ Support ~

Create New Queus Queue Actions v Sl
Filter by Prefix: O Enter Text... b4 110 10f 1 items

Name Queue Type Content-Based DedL 1 M A in Flight Created

PlanetMoreInfo Standard NiA 9 o 2017-08-28 13:28:11 GMT-06:00

@ Feedback (English (US) 2017, A ces, Inc. ¢ erved Privacy Policy ~ Terms of Use

The Queue in SQS

[86]

Processing Data Chapter 3

How it works

The code connects to the given account and the us-west-2 region of AWS. A queue is then
created if one does not exist. Then, for each planet in the source content, the program sends
a message which consists of the more info URL for the planet.

At this point, there is no one listening to the queue, so the messages will sit there until
eventually read or they expire. The default life for each message is 4 days.

How to do it - reading and processing messages

To process the messages, run the 03/process_messages.py program:

import boto3

import botocore

import requests

from bs4 import BeautifulSoup

print ("Starting")
declare our keys (normally, don't hard code this)

access_key = "AKIAIXFTCYO7FEL55TCQ"
access_secret_key = "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"”

create sgs client

sgs = boto3.client ('sgs', "us-west-2",
aws_access_key_id = access_key,
aws_secret_access_key = access_secret_key)

print ("Created client")

create / open the SQS queue

queue = sgs.create_qgueue (QueueName="PlanetMoreInfo")
queue_url = queue["QueueUrl"]
print ("Opened queue: %s" % queue_url)

while True:
print ("Attempting to receive messages")
response = sgs.receive_message (QueueUrl=queue_url,
MaxNumberOfMessages=1,
WaitTimeSeconds=1)
if not 'Messages' in response:
print ("No messages")
continue

[871]

Processing Data Chapter 3

message = response|'Messages'] [0]
receipt_handle = message['ReceiptHandle']
url = message['Body']

parse the page
html = requests.get (url)
bsobj = BeautifulSoup (html.text, "lxml")

now find the planet name and albedo info

planet=bsobj.findAll ("h1", {"id": "firstHeading"}) [0].text
albedo_node = bsobj.findAll("a", {"href": "/wiki/Geometric_albedo"}) [0]
root_albedo = albedo_node.parent

albedo = root_albedo.text.strip/()

delete the message from the queue

sgs.delete_message (
QueueUrl=queue_url,
ReceiptHandle=receipt_handle

print the planets name and albedo info

o

print ("%$s: %s" % (planet, albedo))

Run the script using python process_messages.py. You will see output similar to the
following;:

Starting

Created client

Opened queue:
https://us-west-2.queue.amazonaws.com/414704166289/PlanetMoreInfo
Attempting to receive messages
Jupiter: 0.343 (Bond)

0.52 (geom.) [3]

Attempting to receive messages
Mercury (planet): 0.142 (geom.) [10]
Attempting to receive messages
Uranus: 0.300 (Bond)

0.51 (geom.) [5]

Attempting to receive messages
Neptune: 0.290 (bond)

0.41 (geom.) [4]

Attempting to receive messages
Pluto: 0.49 to 0.66 (geometric, varies by 35%) [1][7]
Attempting to receive messages
Venus: 0.689 (geometric) [2]
Attempting to receive messages
Earth: 0.367 geometric([3]

[881]

Processing Data Chapter 3

Attempting to receive messages
Mars: 0.170 (geometric) [8]
0.25 (Bond) [7]

Attempting to receive messages
Saturn: 0.499 (geometric) [4]
Attempting to receive messages
No messages

How it works

The program connects to SQS and opens the queue. Opening the queue for reading is also
done using sgs . create_queue, which will simply return the queue if it already exists.

Then, it enters a loop calling sqgs . receive_message, specifying the URL of the queue, the
number of messages to receive in each read, and the maximum amount of time to wait in
seconds if there are no messages available.

If a message is read, the URL in the message is retrieved and scraping techniques are used
to read the page at the URL and extract the planet's name and information about its albedo.

Note that we retrieve the receipt handle of the message. This is needed to delete the
message from the queue. If we do not delete the message, it will be made available in the
queue after a period of time. So if our scraper crashed and didn't perform this
acknowledgement, the messages will be made available again by SQS for another scraper to
process (or the same one when it is back up).

There's more...

You can find more information about S3 at: https://aws.amazon.com/s3/. Specifics on
the details of the API are available at: https://aws.amazon.com/documentation/s3/.

[891]

Working with Images, Audio,
and other Assets

In this chapter, we will cover:

e Downloading media content on the web

e Parsing a URL with urllib to get the filename

¢ Determining type of content for a URL

¢ Determining a file extension from a content type

¢ Downloading and saving images to the local file system
¢ Downloading and saving images to S3

¢ Generating thumbnails for images

¢ Taking website screenshots with Selenium

e Taking a website screenshot with an external service
¢ Performing OCR on images with pytessaract

¢ Creating a Video Thumbnail

¢ Ripping an MP4 video to an MP3

Working with Images, Audio, and other Assets Chapter 4

Introduction

A common practice in scraping is the download, storage, and further processing of media
content (non-web pages or data files). This media can include images, audio, and video. To
store the content locally (or in a service like S3) and do it correctly, we need to know what
the type of media is, and it's not enough to trust the file extension in the URL. We will learn
how to download and correctly represent the media type based on information from the
web server.

Another common task is the generation of thumbnails of images, videos, or even a page of a
website. We will examine several techniques of how to generate thumbnails and make
website page screenshots. Many times these are used on a new website as thumbnail links
to the scraped media that is now stored locally.

Finally, it is often the need to be able to transcode media, such as converting non-MP4
videos to MP4, or changing the bit-rate or resolution of a video. Another scenario is to
extract only the audio from a video file. We won't look at video transcoding, but we will rip
MP3 audio out of an MP4 file using ffmpeg. It's a simple step from there to also transcode

video with ffmpeg.

Downloading media content from the web

Downloading media content from the web is a simple process: use Requests or another
library and download it just like you would HTML content.

Getting ready

There is a class named URLUtility in the urls.py mdoule in the util folder of the
solution. This class handles several of the scenarios in this chapter with downloading and
parsing URLs. We will be using this class in this recipe and a few others. Make sure the
modules folder is in your Python path. Also, the example for this recipe is in the
04/01_download_image.py file.

[91]

Working with Images, Audio, and other Assets Chapter 4

How to do it

Here is how we proceed with the recipe:

1. The URLUti1lity class can download content from a URL. The code in the
recipe's file is the following;:

import const
from util.urls import URLUtility

util = URLUtility (const.ApodEclipseImage())
print (len(util.data))

2. When running this you will see the following output:

Reading URL: https://apod.nasa.gov/apod/image/1709/BT5643s.jpg
Read 171014 bytes
171014

The example reads 171014 bytes of data.

How it works

The URL is defined as a constant const .ApodEclipselImage () in the const module:

def ApodEclipselImage () :
return "https://apod.nasa.gov/apod/image/1709/BT5643s. jpg"

The constructor of the URLUt i1ity class has the following implementation:

def _ _init_ (self, url, readNow=True):

""" Construct the object, parse the URL, and download now if
specified"""

self._url = url

self._response = None

self._parsed = urlparse(url)

if readNow:

self.read()

The constructor stores the URL, parses it, and downloads the file with the read () method.
The following is the code of the read () method:

def read(self):
self._response = urllib.request.urlopen(self._url)
self._data = self._response.read()

[92]

Working with Images, Audio, and other Assets Chapter 4

This function uses urlopen to get a response object, and then reads the stream and stores it
as a property of the object. That data can then be retrieved using the data property:

@property

def data(self):
self.ensure_response ()
return self._data

The code then simply reports on the length of that data, with the value of 171014.

There's more...

This class will be used for other tasks such as determining content types, filename, and
extensions for those files. We will examine parsing of URLs for filenames next.

Parsing a URL with urllib to get the filename

When downloading content from a URL, we often want to save it in a file. Often it is good
enough to save the file in a file with a name found in the URL. But the URL consists of a
number of fragments, so how can we find the actual filename from the URL, especially
where there are often many parameters after the file name?

Getting ready

We will again be using the URLUtility class for this task. The code file for the recipe
is 04/02_parse_url.py.

How to do it

Execute the recipe's file with your python interpreter. It will run the following code:

util = URLUtility (const.ApodEclipselImage())
print (util.filename_without_ext)

[93]

Working with Images, Audio, and other Assets Chapter 4

This results in the following output:

Reading URL: https://apod.nasa.gov/apod/image/1709/BT5643s.jpg
Read 171014 bytes
The filename is: BT5643s

How it works

In the constructor for URLUtility, thereisacall tourlib.parse.urlparse. The
following demonstrates using the function interactively:

>>> parsed = urlparse (const.ApodEclipseImage ())

>>> parsed

ParseResult (scheme="https', netloc='apod.nasa.gov',
path="'/apod/image/1709/BT5643s.Jjpg', params='', query='', fragment='")

The ParseResult object contains the various components of the URL. The path element
contains the path and the filename. The call to the . filename_without_ext property
returns just the filename without the extension:

@property
def filename_without_ext (self):
filename = os.path.splitext (os.path.basename (self._parsed.path)) [0]

return filename

The call to os.path.basename returns only the filename portion of the path (including the
extension). os.path.splittext () then separates the filename and the extension, and the
function returns the first element of that tuple/list (the filename).

There's more...

It may seem odd that this does not also return the extension as part of the filename. This is
because we cannot assume that the content that we received actually matches the implied
type from the extension. It is more accurate to determine this using headers returned by the
web server. That's our next recipe.

[94]

Working with Images, Audio, and other Assets Chapter 4

Determining the type of content for a URL

When performing a GET requests for content from a web server, the web server will return a

number of headers, one of which identities the type of the content from the perspective of
the web server. In this recipe we learn to use that to determine what the web server

considers the type of the content.

Getting ready

We again use the URLUtility class. The code for the recipe is
in 04/03_determine_content_type_from_response.py.

How to do it

We proceed as follows:
1. Execute the script for the recipe. It contains the following code:

util = URLUtility(const.ApodEclipseImage())
print ("The content type is: " + util.contenttype)

2. With the following result:

Reading URL: https://apod.nasa.gov/apod/image/1709/BT5643s.jpg
Read 171014 bytes
The content type is: image/Jjpeg

How it works

The . contentype property is implemented as follows:

@property
def contenttype (self):
self.ensure_response ()
return self._response.headers|['content-type']

[95]

Working with Images, Audio, and other Assets Chapter 4

The .headers property of the _response object is a dictionary-like class of headers. The
content-type key will retrieve the content-type specified by the server. This call to the
ensure_response () method simply ensures that the . read () function has been executed.

There's more...

The headers in a response contain a wealth of information. If we look more closely at the
headers property of the response, we can see the following headers are returned:

>>> response = urllib.request.urlopen (const.ApodEclipseImage())
>>> for header in response.headers: print (header)
Date

Server

Last-Modified

ETag

Accept-Ranges

Content-Length

Connection

Content-Type

Strict-Transport-Security

And we can see the values for each of these headers.

>>> for header in response.headers: print (header + " ==> " +
response.headers[header])

Date ==> Tue, 26 Sep 2017 19:31:41 GMT

Server ==> WebServer/1.0

Last-Modified ==> Thu, 31 Aug 2017 20:26:32 GMT

ETag ==> "547bb44-29c06-5581275ce2b86"

Accept—-Ranges ==> bytes

Content-Length ==> 171014

Connection ==> close

Content-Type ==> image/jpeg

Strict-Transport—-Security ==> max-age=31536000; includeSubDomains

Many of these we will not examine in this book, but for the unfamiliar it is good to know
that they exist.

[96]

Working with Images, Audio, and other Assets Chapter 4

Determining the file extension from a
content type

It is good practice to use the content-type header to determine the type of content, and to
determine the extension to use for storing the content as a file.

Getting ready

We again use the URLUt i1lity object that we created. The recipe's script
is 04/04_determine_file_extension_from_contenttype.py) :.

How to do it

Proceed by running the recipe's script.
An extension for the media type can be found using the .extension property:

util = URLUtility(const.ApodEclipseImage ())
print ("Filename from content-type: " + util.extension_from_contenttype)
print ("Filename from url: " + util.extension_from_url)

This results in the following output:

Reading URL: https://apod.nasa.gov/apod/image/1709/BT5643s.jpg
Read 171014 bytes

Filename from content-type: .Jjpg

Filename from url: .jpg

This reports both the extension determined from the file type, and also from the URL.
These can be different, but in this case they are the same.

How it works

The following is the implementation of the .extension_from_contenttype property:
@property
def extension_from_contenttype (self) :

self.ensure_response ()

map = const.ContentTypeToExtensions ()

[97]

Working with Images, Audio, and other Assets Chapter 4

if self.contenttype in map:
return map[self.contenttype]
return None

The first line ensures that we have read the response from the URL. The function then uses
a python dictionary, defined in the const module, which contains a dictionary of content-
types to extension:

def ContentTypeToExtensions() :
return <

"image/jpeg": ".jpg",
"image/jpg": ".jpg",
"image/png": ".png"

}

If the content type is in the dictionary, then the corresponding value will be returned.
Otherwise, None is returned.

Note the corresponding property, .extension_from_url:

@property

def extension_from_url (self):
ext = os.path.splitext (os.path.basename (self._parsed.path)) [1]
return ext

This uses the same technique as the . filename property to parse the URL, but instead
returns the [1] element, which represents the extension instead of the base filename.

There's more...

As stated, it's best to use the content-type header to determine an extension for storing
the file locally. There are other techniques than what is provided here, but this is the
easiest.

Downloading and saving images to the local
file system

Sometimes when scraping we just download and parse data, such as HTML, to extract some
data, and then throw out what we read. Other times, we want to keep the downloaded
content by storing it as a file.

[98]

Working with Images, Audio, and other Assets Chapter 4

How to do it

The code example for this recipe is in the 04/05_save_image_as_£file.py file. The
portion of the file of importance is:

download the image
item = URLUtility (const.ApodEclipselImage())

create a file writer to write the data

FileBlobWriter (expanduser ("~")) .write (item.filename, item.data)

Run the script with your Python interpreter and you will get the following output:

Reading URL: https://apod.nasa.gov/apod/image/1709/BT5643s.jpg

Read 171014 bytes
Attempting to write 171014 bytes to BT5643s.jpg:

The write was successful

How it works

The sample simply writes the data to a file using standard Python file access functions. It
does it in an object oriented manner by using a standard interface for writing data and with

a file based implementation in the FileBlobWriter class:

""" Tmplements the IBlobWriter interface to write the blob to a file """

from interface import implements
from core.i_blob_writer import IBlobWriter

class FileBlobWriter (implements (IBlobWriter)) :
def _ _init__ (self, location):
self._location = location

def write(self, filename, contents):
full_filename = self._location + "/" + filename

print ("Attempting to write {0} bytes to
{1}:".format (len(contents), filename))

with open (full_filename, 'wb') as outfile:
outfile.write (contents)

print ("The write was successful")

[991]

Working with Images, Audio, and other Assets Chapter 4

The class is passed a string representing the directory where the file should be placed. The
data is actually written during a later call to the .write () method. This method merges
the filename and directory (_location), and then opens/creates the file and writes the
bytes. The with statement ensures that the file is closed.

There's more...

This write could have simply been handled using a function that wraps the code. This
object will be reused throughout this chapter. We could use the duck-typing of python, or
just a function, but the clarity of interfaces is easier. Speaking of that, the following is the
definition of this interface:

""" Defines the interface for writing a blob of data to storage """
from interface import Interface

class IBlobWriter (Interface):
def write(self, filename, contents):
pass

We will also see another implementation of this interface that lets us store files in S3.
Through this type of implementation, through interface inheritance, we can easily substitute
implementations.

Downloading and saving images to S3

We have seen how to write content into S3 in chapter 3, Processing Data. Here we will
extend that process into an interface implementation of IBlobWriter to write to S3.

Getting ready

The code example for this recipe is in the 04/06_save_image_in_s3.py file. Also ensure
that you have set your AWS keys as environment variables so that Boto can authenticate the
script.

[100]

Working with Images, Audio, and other Assets Chapter 4

How to do it
We proceed as follows:

1. Run the recipe's script. It will execute the following:

download the image

item = URLUtility (const.ApodEclipseImage())

store it in S3
S3BlobWriter (bucket_name="scraping-apod") .write (item.filename,

item.data)
2. Checking in S3, we can see that the bucket was created and the image placed
within the bucket:

.-":l.‘ mike@heydt.org v Global ~ Support ~

Amazon 83 > scraping-apod-images
Ovenview Froeres

‘ Q Type a prefix and press Enter to search. Press ESC to clear.

Viewing 1 to 1
[] Name Last modified Size Storage class
— Sep 27, 2017 12:02:59
[] [& BT5643s.jpg PMp 167.0 KB Standard
Viewing 1 to 1

The Image in S3

How it works

The following is the implementation of the S3BlobWriter:

class S3BlobWriter (implements (IBlobWriter)) :
def __init_ (self, bucket_name, boto_client=None) :

[101]

Working with Images, Audio, and other Assets Chapter 4

self._bucket_name = bucket_name

if self._ bucket_name is None:
self.bucket_name = "/"

caller can specify a boto client (can reuse and save auth times)
self. boto_client = boto_client
or create a boto client if user did not, use secrets from
environment variables
if self. boto_client is None:
self. boto_client = boto3.client ('s3")

def write(self, filename, contents):
create bucket, and put the object
self._boto_client.create_bucket (Bucket=self._bucket_name,
ACL='public-read"')

self._boto_client.put_object (Bucket=self._bucket_name,
Key=filenamne,
Body=contents,
ACL="public-read")

We have seen this code in before in the recipe on writing to S3. This class wraps that up
neatly into a reusable interface implementation. When creating an instance, specify the
bucket name. Then every call to .write () will save in the same bucket.

There's more...

S3 provides a capability on buckets known as enabling a website. Essentially, if you set this
option, the content in your bucket will be served via HTTP. We could write many images
to this directory and then have them served directly from S3 without implementing a web
server!

Generating thumbnails for images

Many times when downloading an image, you do not want to save the full image, but only
a thumbnail. Or you may also save both the full-size image and a thumbnail. Thumbnails
can be easily created in python using the Pillow library. Pillow is a fork of the Python
Image Library, and contains many useful functions for manipulating images. You can find
more information on Pillow at https://python-pillow.org. In this recipe, we use Pillow
to create an image thumbnail.

[102]

https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org
https://python-pillow.org

Working with Images, Audio, and other Assets Chapter 4

Getting ready

The script for this recipe is 04/07_create_image_thumbnail.py. It uses the Pillow
library, so make sure you have installed Pillow into your environment with pip or other
package management tools:

pip install pillow

How to do it

Here is how proceed with the recipe:

Run the script for the recipe. It will execute the following code:

from os.path import expanduser

import const

from core.file_blob_writer import FileBlobWriter

from core.image_thumbnail_generator import ImageThumbnailGenerator
from util.urls import URLUtility

download the image and get the bytes
img_data = URLUtility (const.ApodEclipseImage()) .data

we will store this in our home folder
fw = FileBlobWriter (expanduser ("~"))

Create a thumbnail generator and scale the image
tg = ImageThumbnailGenerator (img_data) .scale (200, 200)

write the image to a file
fw.write ("eclipse_thumbnail.png", tg.bytes)

The result from this will be a file named eclipse_thumbnail.png written into your home
directory.

[103]

Working with Images, Audio, and other Assets Chapter 4

The Thumbnail we Created

Pillow keeps the ratio of width and height consistent.

How it works

The ImageThumbnailGenerator class wraps calls to Pillow to provide a very simple API
for creating a thumbnail for an image:

import io
from PIL import Image

class ImageThumbnailGenerator () :
def __init__ (self, bytes):
Create a pillow image with the data provided
self._image = Image.open(io.BytesIO (bytes))

def scale(self, width, height):
call the thumbnail method to create the thumbnail
self._image.thumbnail ((width, height))
return self

@property
def bytes(self):
returns the bytes of the pillow image

save the image to an in memory objects
bytesio = io0.BytesIO()
self._image.save (bytesio, format="png")

[104]

Working with Images, Audio, and other Assets Chapter 4

set the position on the stream to 0 and return the underlying
data

bytesio.seek (0)

return bytesio.getvalue ()

The constructor is passed the data for the image and creates a Pillow image object from that
data. The thumbnail is created by calling . thumbnail () with a tuple representing the
desired size of the thumbnail. This resizes the existing image, and Pillow preserves the
aspect ratio. It will determine the longer side of the image and scale that to the value in the
tuple representing that axis. This image is taller than it is wide, so the thumbnail is made
200 pixels high, and the width is scaled accordingly (in this case, to 160 pixels).

Taking a screenshot of a website

A common scraping task is to create a screenshot of a website. In Python we can create a
thumbnail using selenium and webdriver.

Getting ready

The script for this recipe is 04/08_create_website_screenshot.py. Also, make sure
you have selenium in your path and have installed the Python library.

How to do it
Run the script for the recipe. The code in the script is the following:

from core.website_screenshot_generator import WebsiteScreenshotGenerator
from core.file_blob_writer import FileBlobWriter
from os.path import expanduser

get the screenshot
image_bytes = WebsiteScreenshotGenerator () .capture ("http://espn.go.com",
500, 500) .image_bytes

save it to a file
FileBlobWriter (expanduser ("~")) .write ("website_screenshot.png",
image_bytes)

A WebsiteScreenshotGenerator object is created, and then its capture method is called,
passing the URL of the website to capture, and a desired width in pixels for the image.

[105]

Working with Images, Audio, and other Assets Chapter 4

This creates a Pillow image that can be accessed using the . image property, and the bytes
for the image can be directly accessed using . image_bytes. This script gets those bytes
and writes them to the website_screenshot.png file in you home directory.

You will see the following output from this script:

Connected to pydev debugger (build 162.1967.10)

Capturing website screenshot of: http://espn.go.com

Got a screenshot with the following dimensions: (500, 7416)
Cropped the image to: 500 500

Attempting to write 217054 bytes to website_screenshot.png:
The write was successful

And our resulting image is the following (the image will vary in its content):

LOGIN SCORES

NCAAM

How Rick Pitino arrived at his
predictable end

Trouble has followed Pitino nearly from the moment he started as a
coach. All along, he said it wasn't him, sidestepping issue after issue to
keep his job. That all changed Wednesday.

The Screenshot of the Web Page

[106]

Working with Images, Audio, and other Assets

Chapter 4

How it works

The following is the code of the WebsiteScreenshotGenerator class:

class WebsiteScreenshotGenerator () :
def _ _init_ (self):
self._screenshot = None

def capture(self, url, width, height, crop=True):
print ("Capturing website screenshot of: " + url)
driver = webdriver.PhantomdS ()

if width and height:
driver.set_window_size (width, height)

go and get the content at the url
driver.get (url)

get the screenshot and make it into a Pillow Image
self._screenshot =
Image.open (io.BytesIO(driver.get_screenshot_as_png()))
print ("Got a screenshot with the following dimensions:
{0}".format (self._screenshot.size))

if crop:
crop the image

self._screenshot = self._screenshot.crop((0,0, width, height))
print ("Cropped the image to: {0} {1}".format (width, height))

return self

@property
def image (self):
return self._screenshot

@property

def image_bytes (self):
bytesio = i0.BytesIO()
self._screenshot.save (bytesio, "PNG")
bytesio.seek (0)
return bytesio.getvalue ()

[107]

Working with Images, Audio, and other Assets Chapter 4

The call to driver.get_screenshot_as_png () does the heavy lifting. It renders the
page to a PNG format image and returns the bytes of the image. This data is then converted
into a Pillow Image object.

Note in the output that the height of the image returned from webdriver is 7416 pixels, and
not 500 as we specified. The Phantom]S renderer will attempt to handle infinitely scrolling
web sites, and generally won't constrain the screenshot to the height given to the window.

To actually make the screenshot the specified height, set the crop parameter to True (the
default). Then this code will use the crop method of the Pillow Image to set the desired
height. If you run this code with crop=False, then the result would be an image 7416
pixels in height.

Taking a screenshot of a website with an
external service

The previous recipe used selenium, webdriver, and Phantom]S to create the screenshot.
This obviously requires having those packages installed. If you don't want to install those
and still want to make website screenshots, then you can use one of a number of web
services that can take screenshots. In this recipe, we will use the service at
www.screenshotapi.io to create a screenshot.

[108]

http://www.screenshotapi.io

Working with Images, Audio, and other Assets Chapter 4

Getting ready

First, head over to www.screenshotapi . io and sign up for a free account:

1) Screenshot API

& > C (Y | @ Secure | https://www.screenshotapiio

screenshot anUp

Capture high quality screenshots of any URL

A REST API Designed for high volume, low cost, highly customizable use.

Get 30,000 Screenshots Free

All new accounts get their first 30,000 screenshots free, no credit card is needed.

After that it's a low and simple flat price of $0.0003 per screenshot (3,000 screenshots per $1).

Giveitatry

URL to capture

Firefox Webdriver No Device Emulation 1480x1037 Viewport

Disable Javascript Full page Allow cached (max 72 hours)

Screenshot of the free account sign up

[109]

Working with Images, Audio, and other Assets Chapter 4

Once your account is created, proceed to get an API key. This will be needed to
authenticate against their service:

@ Michael Heydt ~
- !

Dashboard
& AP| USAGE <
Your APl Key
Today Last 7 days Last 30 days
bd17ate1- 0 1 1
Created on 9/26/2017, 3:50:33 AM.
29,999 API Credits Remaining m

The API Key

How to do it

The script for this example is 04/09_screenshotapi.py. Give this a run and it will make
a screenshot. The code is the following, and is very similar to the previous recipe in
structure:

from core.website_screenshot_with_screenshotapi import
WebsiteScreenshotGenerator

from core.file_blob_writer import FileBlobWriter

from os.path import expanduser

get the screenshot
image_bytes = WebsiteScreenshotGenerator ("bdl7alel-db43-4686-9f9b~
b72b67a5535e") \

.capture ("http://espn.go.com", 500, 500).image_bytes

save it to a file
FileBlobWriter (expanduser ("~")) .write ("website_screenshot.png",
image_bytes)

The functional difference to the previous recipe is that we used a different
WebsiteScreenshotGenerator implementation. This one comes from
the core.website_screenshot_with_screenshotapi module.

[110]

Working with Images, Audio, and other Assets Chapter 4

When run, the following will output to the console:

Sending request: http://espn.go.com

{"status":"ready", "key":"2e9a40b86c95£50ad3£70613798828a8", "apiCreditsCost"
1}

The image key is: 2e9a40b86c95f50ad3£70613798828a8

Trying to retrieve: https://api.screenshotapi.io/retrieve

Downloading image:
https://screenshotapi.s3.amazonaws.com/captures/2e9a40b86c95f50ad3£70613798
828a8.png

Saving screenshot to:
downloaded_screenshot.png2e%9a40b86c95£50ad3£70613798828a8

Cropped the image to: 500 500

Attempting to write 209197 bytes to website_screenshot.png:

The write was successful

And gives us the following image:

NCAAM

How Rick Pitino arrived at his
predictable end

Trouble has followed Pitino nearly from the moment he startedas a
coach. All along, he said it wasn't him, sidestepping issue after issue to
keep his job. That all changed Wednesday

The Website Screenshot from screenshotapi.io

[111]

Working with Images, Audio, and other Assets Chapter 4

How it works

The following is the code of this WebsiteScreenshotGenerator

class WebsiteScreenshotGenerator:
def __init__ (self, apikey):
self._screenshot = None
self._apikey = apikey

def capture(self, url, width, height, crop=True):
key = self.beginCapture(url, "{0}x{1}".format (width, height),
"true", "firefox", "true")

print ("The image key is: " + key)

timeout = 30
tCounter = 0
tCountIncr =

while True:
result = self.tryRetrieve (key)
if result["success"]:
print ("Saving screenshot to: downloaded_screenshot.png" +

key)
bytes=result["bytes"]
self._screenshot = Image.open(io.BytesIO (bytes))
if crop:
crop the image
self._screenshot = self._screenshot.crop((0, 0, width,
height))
print ("Cropped the image to: {0} {1}".format (width,
height))
break
tCounter += tCountlncr
print ("Screenshot not yet ready.. waiting for: " +
str (tCountIncr) + " seconds.")

time.sleep (tCountIncr)
if tCounter > timeout:
print ("Timed out while downloading: " + key)
break
return self

def beginCapture(self, url, viewport, fullpage, webdriver, javascript):
serverUrl = "https://api.screenshotapi.io/capture"

[112]

Working with Images, Audio, and other Assets Chapter 4

print ('Sending request: ' + url)

headers = {'apikey': self._apikey}

params = {'url': urllib.parse.unquote (url) .encode('utf8"'),
'viewport': viewport, 'fullpage': fullpage,

'webdriver': webdriver, 'javascript': javascript}
result = requests.post (serverUrl, data=params, headers=headers)
print (result.text)
json_results = json.loads (result.text)
return Jjson_results['key']

def tryRetrieve(self, key):
url = 'https://api.screenshotapi.io/retrieve'
headers = {'apikey': self._apikey}
params = {'key': key}

print ('Trying to retrieve: ' + url)
result = requests.get (url, params=params, headers=headers)
json_results = json.loads (result.text)
if json_results(["status"] == "ready":
print ('Downloading image: ' + json_results["imageUrl"])
image_result = requests.get (json_results["imageUrl"])
return {'success': True, 'bytes': image_result.content}
else:
return {'success': False}
@property

def image (self):
return self._screenshot

@property

def image_bytes (self):
bytesio = i0.BytesIO()
self._screenshot.save (bytesio, "PNG")
bytesio.seek (0)
return bytesio.getvalue ()

The screenshotapi.io APlis a REST API. There are two different endpoints:

® https://api.screenshotapi.io/capture

® https://api.screenshotapi.io/retrieve

[113]

https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/capture
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve
https://api.screenshotapi.io/retrieve

Working with Images, Audio, and other Assets Chapter 4

The first endpoint is called and passes the URL and other parameters to their service. Upon
successful execution, this API returns a key that can be used on the other endpoint to
retrieve the image. The screenshot is performed asyncronously, and we need to continually
call the retrieve API using the key returned from the capture endpoint. This endpoint
will return a status value of ready when the screenshot is complete. The code simply loops
until this is set, an error occurs, or the code times out.

When the snapshot is available, the API returns a URL to the image in the retrieve
response. The code then retrieves this image and constructs a Pillow Image object from the
received data.

There's more...

The screenshotapi.io APl has many useful parameters. Several of these allow you to
adjust which browser engine to use (Firefox, Chrome, or Phantom]S), device emulation, and
whether or not to execute JavaScript in the web page. For more details on these options and
ﬂ1e[\PI,gOiI)http://docs.screenshotapi.io/restfapi/.

Performing OCR on an image with
pytesseract

It is possible to extract text from within images using the pytesseract library. In this recipe,
we will use pytesseract to extract text from an image. Tesseract is an open source OCR
library sponsored by Google. The source is available here: https://github.com/
tesseract-ocr/tesseract, and you can also find more information on the library there.
0;pytesseract is a thin python wrapper that provides a pythonic API to the executable.

Getting ready

Make sure you have pytesseract installed:

pip install pytesseract

[114]

http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
http://docs.screenshotapi.io/rest-api/
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract

Working with Images, Audio, and other Assets Chapter 4

You will also need to install tesseract-ocr. On Windows, there is an executable installer,
which you can get here:
https://github.com/tesseract-ocr/tesseract/wiki/4.0-with-LSTM#400-alpha

—-for-windows. On a Linux system, you can use apt-get:
sudo apt—-get tesseract-ocr
The easiest means of installation on a Mac is using brew:

brew install tesseract

The code for this recipe isin 04/10_perform_ocr.py.

How to do it

Execute the script for the recipe. The script is very straightforward:

import pytesseract as pt
from PIL import Image

img = Image.open ("textinimage.png")
text = pt.image_to_string(img)
print (text)

The image that will be processed is the following;:

This is an image containing text.
And some numbers 123456789

And also special characters: |@#5%"M&*(_+

The Image we will OCR

And the script gives the following output:

This is an image containing text.
And some numbers 123456789

And also special characters: !Q@#$%"&* (_+

[115]

Working with Images, Audio, and other Assets Chapter 4

How it works

The image is first loaded as a Pillow Image object. We can directly pass this object to the
pytesseract image_to_string () function. That function runs tesseract on the image and
returns the text that it found.

There's more...

One of the primary purposes for using OCR in a scraping application is in the solving of
text-based captchas. We won't get into captcha solutions as they can be cumbersome and
are also documented in other Packt titles.

Creating a Video Thumbnail

You might want to create a thumbnail for a video that you downloaded from a website.
These could be used on a page that shows a number of video thumbnails and lets you click
on them to watch the specific video.

Getting ready

This sample will use a tool known as ffmpeg. ffmpeg is available at www.ffmpeg.org.
Download and install as per the instructions for your operating system.

How to do it

The example scriptisin 04/11_create_video_thumbnail.py. It consists of the
following code:

import subprocess

video_file = 'BigBuckBunny.mp4'

thumbnail_file = 'thumbnail.jpg'

subprocess.call (['ffmpeg', '-i', video_file, '-ss', '00:01:03.000', '-
vframes', '1l', thumbnail_file, "-y"1])

[116]

Working with Images, Audio, and other Assets Chapter 4

When run you will see output from ffmpeg:

built with Apple LLVM version 8.1.0 (clang-802.0.42)

configuration: —--prefix=/usr/local/Cellar/ffmpeg/3.3.4 —--enable-shared —-
enable-pthreads --enable-gpl --enable-version3 --enable-hardcoded-tables —--
enable-avresample —-cc=clang —-host-cflags= —--host-1ldflags= ——enable-
libmp3lame --enable-1ibx264 --enable-libxvid —--enable-opencl --enable-
videotoolbox —--disable-lzma -—-enable-vda

libavutil 55. 58.100 / 55. 58.100

libavcodec 57. 89.100 / 57. 89.100

libavformat 57. 71.100 / 57. 71.100

libavdevice 57. 6.100 / 57. 6.100

libavfilter 6. 82.100 / 6. 82.100

libavresample 3. 5. 0 / 3. 5. 0

libswscale 4. 6.100 / 4. 6.100

libswresample 2. 7.100 / 2. 7.100

libpostproc 54. 5.100 / 54. 5.100
Input #0, mov,mp4,mé4a,3gp,392,mj2, from 'BigBuckBunny.mp4':

Metadata:
major_brand : isom
minor_version : 512

compatible_brands: mp4l

creation_time : 1970-01-01T00:00:00.000000%

title : Big Buck Bunny

artist : Blender Foundation

composer : Blender Foundation

date : 2008

encoder : Lavf52.14.0

Duration: 00:09:56.46, start: 0.000000, bitrate: 867 kb/s

Stream #0:0 (und): Video: h264 (Constrained Baseline) (avcl / 0x31637661),
yuv420p, 320x180 [SAR 1:1 DAR 16:9], 702 kb/s, 24 fps, 24 tbr, 24 tbn, 48
tbc (default)

Metadata:

creation_time : 1970-01-01T00:00:00.000000%

handler_name : VideoHandler

Stream #0:1 (und): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo,
fltp, 159 kb/s (default)

Metadata:
creation_time : 1970-01-01T00:00:00.000000%
handler_name : SoundHandler

Stream mapping:

Stream #0:0 -> #0:0 (h264 (native) -> mjpeg (native))
Press [g] to stop, [?] for help

[swscaler @ 0x7fb50b103000] deprecated pixel format used, make sure you did
set range correctly
Output #0, image2, to 'thumbnail.jpg':

Metadata:

major_brand : isom

[117]

Working with Images, Audio, and other Assets Chapter 4

minor_version : 512

compatible_brands: mp4l

date : 2008

title : Big Buck Bunny

artist : Blender Foundation

composer : Blender Foundation

encoder : Lavf57.71.100

Stream #0:0(und): Video: mjpeg, yuvj420p(pc), 320x180 [SAR 1:1 DAR 16:91],
g=2-31, 200 kb/s, 24 fps, 24 tbn, 24 tbc (default)

Metadata:

creation_time : 1970-01-01T00:00:00.0000002

handler_name : VideoHandler

encoder : Lavc57.89.100 mjpeg

Side data:

cpb: bitrate max/min/avg: 0/0/200000 buffer size: 0 vbv_delay: -1

frame= 1 fps=0.0 g=4.0 Lsize=N/A time=00:00:00.04 bitrate=N/A speed=0.151x
video:8kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB
muxing overhead: unknown

And the output JPG file will be the following JPG image:

The Thumbnail Created from the Video

How it works

The . f fmpeg file is actually an executable. The code executes the following ffmpeg
command as a sub process:

ffmpeg -i BigBuckBunny.mp4 -ss 00:01:03.000 -frames:v 1 thumbnail.jpg -y

[118]

Working with Images, Audio, and other Assets Chapter 4

The input file is BigBuckBunny .mp4. The -ss option informs where we want to examine
the video. —frames: v states that we want to extract one frame. Finally we tell £ fmpeg to
write that frame to thumbnail. jpg (and -y confirms overwriting an existing file).

There's more..

ffmpeg is an incredibly versatile and power tool. A scraper I once created would crawl and
find media (actually, commercials played on websites), and store them in a digital archive.
The scraper would then send a message through a message queue that would be picked up
by a farm of servers whose only job was to run ffmpeg to convert the video into many
different formats, bit rates, and also create thumbnails. From that point, more messages
would be sent to auditor to use a front end application to check the content for compliance
to advertising contract terms. Get to know ffmeg, it is a great tool.

Ripping an MP4 video to an MP3

Now let's examine how to rip the audio from an MP4 video into an MP3 file. The reasons
you may want to do this include wanting to take the audio of the video with you (perhaps
it's a music video), or you are building a scraper / media collection system that also requires
the audio separate from the video.

This task can be accomplished using the moviepy library. moviepy is a neat library that

lets you do all kinds of fun processing on your videos. One of those capabilities is to extract
the audio as an MP3.

Getting ready

Make sure that you have moviepy installed in your environment:

pip install moviepy

We also need to have ffmpeg installed, which we used in the previous recipe, so you should
be good to go with this requirement.

[119]

Working with Images, Audio, and other Assets Chapter 4

How to do it

The code to demonstrate ripping to MP3 isin 04/12_rip_mp3_from_mp4.py.moviepy
makes this process incredibly easy.
1. The following rips the MP4 downloaded in the previous recipe:

import moviepy.editor as mp
clip = mp.VideoFileClip ("BigBuckBunny.mp4")

clip.audio.write_audiofile ("movie_audio.mp3")

2. When running this, you will see output, such as the following, as the file is
ripped. This only took a few seconds:

[MoviePy] Writing audio in movie_audio.mp3

1005 NN 17820/17820 [00:16<00:00, 1081.67it/s]

[MoviePy] Done.

3. When complete, you will have an MP3 file:

1ls -1 *.mp3
12931074 Sep 27 21:44 movie_audio.mp3

—rw—r—--r—-—@ 1 michaelheydt staff

There's more...

For more info on moviepy, check out the project site
at http://zulko.github.io/moviepy/.

[120]

http://zulko.github.io/moviepy/

Scraping - Code of Conduct

In this chapter, we will cover:

e Scraping legality and scraping politely
¢ Respecting robots.txt

¢ Crawling using the sitemap

¢ Crawling with delays

¢ Using identifiable user agents

Setting the number of concurrent requests per domain

Using auto throttling

Caching responses

Introduction

While you can technically scrape any website, it is important to know whether scraping is
legal or not. We will discuss scraping legal concerns, explore general rules of thumb, and
see best practices to scrape politely and minimize potential damage to the target websites.

Scraping legality and scraping politely

There's no real code in this recipe. It's simply an exposition of some of the concepts related
to the legal issues involved in scraping. I'm not a lawyer, so don't take anything I write here
as legal advice. I'll just point out a few things you need to be concerned with when using a
scraper.

Scraping - Code of Conduct Chapter 5

Getting ready

The legality of scraping breaks down into two issues:

e Ownership of content
e Denial of service

Fundamentally, anything posted on the web is open for reading. Every time you load a
page, any page, your browser downloads that content from the web server and visually
presents it to you. So in a sense, you and your browser are already scraping anything you
look at on the web. And by the nature of the web, because someone is posting content
publicly on the web, they are inherently asking you to take that information, but often only
for specific purposes.

The big issue comes with creating automated tools that directly look for and make copies of
things on the internet, with a thing being either data, images, videos, or music - essentially
things that are created by others and represent something that has value to the creator, or
owners. These items may create issues when explicitly making a copy of the item for your
own personal use, and are much more likely to create issues when making a copy and using
that copy for your or others' gain.

Videos, books, music, and images are some of the obvious items of concern over the legality
of making copies either for personal or commercial use. In general, if you scrape content
such as this from open sites, such as those that do not require authorized access or require
payment for access to the content, then you are fine. There are also fair use rules that allow
the reuse of content in certain situations, such as small amounts of document sharing in a
classroom scenario, where knowledge that is published for people to learn is shared and
there is no real economic impact.

Scraping of data from websites is often a much fuzzier problem. By data I mean information
that is provided as a service. A good example, from my experience, is energy prices that are
published to a provider's website. These are often provided as a convenience to customers,
but not for you to scrape freely and use the data for your own commercial analytics service.
That data can often be used without concern if you are just collecting it for a non-public
database or you are only using for your own use, then it is likely fine. But if you use that
database to drive your own website and share that content under your own name, then you
might want to watch out.

The point is, check out the disclaimers / terms of service on the site for what you can do
with that information. It should be documented, but if it is not, then that does not mean that
you are in the clear to go crazy. Always be careful and use common sense, as you are taking
other peoples content for you own purposes.

[122]

Scraping - Code of Conduct Chapter 5

The other concern, which I lump into a concept known as denial of service, relates to the
actual process of collecting information and how often you do it. The process of manually
reading content on a site differs significantly to writing automated bots that relentlessly
badger web servers for content. Taken to an extreme, this access frequency could be so
significant that it denies other legitimate users access to the content, hence denying them
service. It can also increase costs for the hosters of the content by increasing their cost for
bandwidth, or even electrical costs for running the servers.

A well managed website will identify these types of repeated and frequent access and shut
them down using tools such as web application firewalls with rules to block your access
based on IP address, headers, and cookies. In other cases, these may be identified and your
ISP contacted to get you to stop doing these tasks. Remember, you are never truly
anonymous, and smart hosters can figure out who you are, exactly what you accessed, and
when you accessed it.

How to do it

So how do you go about being a good scraper? There are several factors to this that we will
cover in this chapter:

* You can start with respecting the robots. txt file
e Don't crawl every link you find on a site, just those given in a site map

o Throttle your requests, so as do as Han Solo said to Chewbacca: Fly Casual; or,
don't look like you are repeatedly taking content by Crawling Casual

e Identify yourself so that you are known to the site

Respecting robots.txt

Many sites want to be crawled. It is inherent in the nature of the beast: Web hosters put
content on their sites to be seen by humans. But it is also important that other computers see
the content. A great example is search engine optimization (SEO). SEO is a process where
you actually design your site to be crawled by spiders such as Google, so you are actually
encouraging scraping. But at the same time, a publisher may only want specific parts of
their site crawled, and to tell crawlers to keep their spiders off of certain portions of the site,
either it is not for sharing, or not important enough to be crawled and wast the web server
resources.

[123]

Scraping - Code of Conduct Chapter 5

The rules of what you are and are not allowed to crawl are usually contained in a file that is
on most sites known as robots.txt. The robots.txt is a human readable but parsable
file, which can be used to identify the places you are allowed, and not allowed, to scrape.

The format of the robots. txt file is unfortunately not standard and anyone can make their
own modifications, but there is very strong consensus on the format. A robots.txt fileis
normally found at the root URL of the site. To demonstrate arobots. txt file, the following
code contains excerpts of the one provided by Amazon at http://amazon.com/robots.txt.
I've edited it down to just show the important concepts:

User—-agent: *

Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:

/exec/obidos/account-access-login
/exec/obidos/change-style
/exec/obidos/flex-sign-in
/exec/obidos/handle-buy-box
/exec/obidos/tg/cm/member/
/gp/aw/help/id=sss

/gp/cart

/gp/flex

Allow: /wishlist/universal*
Allow: /wishlist/vendor-button*
Allow: /wishlist/get-button*

User—-agent: Googlebot

Disallow:
Disallow:
Disallow:
Disallow:

/rss/people/*/reviews
/gp/pdp/rss/*/reviews
/gp/cdp/member—-reviews/
/gp/aw/cr/

Allow: /wishlist/universal~*
Allow: /wishlist/vendor-button*
Allow: /wishlist/get-button*

It can be seen that there are three main elements in the file:

¢ A user agent declaration for which the following lines, until the end of file or next
user agent statement, are to be applied

o A set of URLs that are allowed to be crawled
e A set of URLs are prohibited from being crawled

[124]

http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt
http://amazon.com/robots.txt

Scraping - Code of Conduct Chapter 5

The syntax is actually quite simple, and Python libraries exist to help us implement the
rules contained within robots.txt. We will be using the reppy library to facilitate
honoring robots. txt.

Getting ready

Let's examine how to demonstrate using robots. txt with the reppy library. For more
information on reppy, see its GitHub page at https://github.com/seomoz/reppy.

reppy can be installed like this:

pip install reppy

However, I found that on my Mac I got an error during installation, and it required the
following command:

CFLAGS=-stdlib=libc++ pip install reppy

General information/searching on Google for a robots . txt Python parsing library will
generally guide you toward using the robotparser library. This library is available for
Python 2.x. For Python 3, it has been moved into the ur11ib library. However, I have

found that this library reports incorrect values in specific scenarios. I'll point that out in our

example.

How to do it

To run the recipe, execute the codein 05/01_sitemap.py. The script will examine
whether several URLs are allowed to be crawled on amazon.com. When running it, you
will see the following output:

True: http://www.amazon.com/

False: http://www.amazon.com/gp/dmusic/

True: http://www.amazon.com/gp/dmusic/promotions/PrimeMusic/
False: http://www.amazon.com/gp/registry/wishlist/

[125]

https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy
https://github.com/seomoz/reppy

Scraping - Code of Conduct Chapter 5

How it works

1. The script begins by importing reppy . robots:
from reppy.robots import Robots
2. The code then uses Robots to fetch the robots.txt for amazon.com.

url = "http://www.amazon.com"
robots = Robots.fetch(url + "/robots.txt")

3. Using the content that was fetched, the script checks several URLs for
accessibility:

paths = [
l/l,
'/gp/dmusic/"',
'/gp/dmusic/promotions/PrimeMusic/"',
'/gp/registry/wishlist/"'

]

for path in paths:
print ("{0}: {1}".format (robots.allowed(path, '*'), url + path))

The results of this code is the following:

True: http://www.amazon.com/

False: http://www.amazon.com/gp/dmusic/

True: http://www.amazon.com/gp/dmusic/promotions/PrimeMusic/
False: http://www.amazon.com/gp/registry/wishlist/

The call to robots.allowed is given the URL and the user agent. It returns True or False
based upon whether the URL is allowed to be crawled. In this case, the results where True,
False, True and False for the specified URLs. Let's examine how.

The / URL has no entry in robots. txt, so it is allowed by default. But in the file under the
* user agent group are the following two lines:

Disallow: /gp/dmusic/
Allow: /gp/dmusic/promotions/PrimeMusic

[126]

Scraping - Code of Conduct Chapter 5

/gp/dmusic is not allowed, so False is returned. /gp/dmusic/promotions/PrimeMusic is
explicitly allowed. If the Allowed: entry was not specified, then the Disallow: /gp/dmusic/
line would also disallow any further paths down from /gp/dmusic/. This essentially says
that any URLs starting with /gp/dmusic/ are disallowed, except that you are allowed to
crawl /gp/dmusic/promotions/PrimeMusic.

Here is where there is a difference when using the robotparser library.
robotparser reports that /gp/dmusic/promotions/PrimeMusic is
disallowed. The library does not handle this type of scenario correctly, as
it stops scanning robots. txt at the first match, and does not continue
further into the file to look for any overrides of this kind.

There's more...

First, for detailed information on robots.txt, see https://developers.google.com/

search/reference/robots_txt.

Note that not all sites have a robots. txt, and its absence does not imply
you have free rights to crawl all the content.

Also, a robots. txt file may contain information on where to find the sitemap(s) for the
website. We examine these sitemaps in the next recipe.

Scrapy can also read robots.txt and find sitemaps for you.

Crawling using the sitemap

A sitemap is a protocol that allows a webmaster to inform search engines about URLs on a
website that are available for crawling. A webmaster would want to use this as they
actually want their information to be crawled by a search engine. The webmaster wants to
make that content available for you to find, at least through search engines. But you can also
use this information to your advantage.

[127]

https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt
https://developers.google.com/search/reference/robots_txt

Scraping - Code of Conduct Chapter 5

A sitemap lists the URLs on a site, and allows a webmasters to specify additional
information about each URL:

e When it was last updated
e How often the content changes
e How important the URL is in relation to others

Sitemaps are useful on websites where:

e Some areas of the website are not available through the browsable interface; that
is, you cannot reach those pages

¢ Ajax, Silverlight, or Flash content is used but not normally processed by search
engines

e The site is very large and there is a chance for the web crawlers to overlook some
of the new or recently updated content

e When websites have a huge number of pages that are isolated or not well linked
together

e When a website has few external links

A sitemap file has the following structure:

<?xml version="1.0" encoding="utf-8"7?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.sitemaps.org/schemas/sitemap/0.9
http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd">
<url>
<loc>http://example.com/</loc>
<lastmod>2006-11-18</lastmod>
<changefreg>daily</changefreqg>
<priority>0.8</priority>
</url>
</urlset>

Each URL in the site will be represented with a <url></url> tag, with all those tags
wrapped in an outer <urlset></urlset> tag. There will always a <loc></loc> tag
specifying the URL. The other three tags are optional.

[128]

Scraping - Code of Conduct Chapter 5

Sitemaps files can be incredibly large, so they are often broken into multiple files and then
referenced by a single sitemap index file. This file has the following format:

<?xml version="1.0" encoding="UTF-8"7?>
<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<sitemap>
<loc>http://www.example.com/sitemapl.xml.gz</loc>
<lastmod>2014-10-01T18:23:174+00:00</lastmod>
</sitemap>
</sitemapindex>

In most cases, the sitemap.xml file is found at the root of the domain. As an example, for
nasa.gov itis https://www.nasa.gov/sitemap.xml. Butnote that this is not a standard,
and different sites may have the map, or maps, at different locations.

A sitemap for a particular website may also be located within the site's robots. txt file. As
an example, the robots. txt file for microsoft.com ends with the following:

Sitemap: https://www.microsoft.com/en-us/explore/msft_sitemap_index.xml
Sitemap: https://www.microsoft.com/learning/sitemap.xml

Sitemap: https://www.microsoft.com/en-us/licensing/sitemap.xml

Sitemap: https://www.microsoft.com/en-us/legal/sitemap.xml

Sitemap: https://www.microsoft.com/filedata/sitemaps/RW5xN8

Sitemap: https://www.microsoft.com/store/collections.xml

Sitemap: https://www.microsoft.com/store/productdetailpages.index.xml

Therefore, to get microsoft.com's sitemaps, we would first need to read the robots. txt file
and extract that information.

Let's now look at parsing a sitemap.

Getting ready

Everything you need is in the 05/02_sitemap.py script, along with the sitemap.py file
in then same folder. The sitemap.py file implements a basic sitemap parser that we will
use in the main script. For the purposes of this example, we will get the sitemap data for
nasa.gov.

[129]

https://www.nasa.gov/sitemap.xml

Scraping - Code of Conduct Chapter 5

How to do it

First execute the 05/02_sitemap.py file. Make sure that the associated sitemap.py file is
in the same directory or your path. When running, after a few seconds you will get output
similar to the following;:

Found 35511 urls

{'lastmod': '2017-10-11T18:232"', 'loc':
'http://www.nasa.gov/centers/marshall/history/this-week-in-nasa-history-apo
llo-7-launches-oct-11-1968.html', 'tag': 'url'}

{'lastmod': '2017-10-11T18:2272"', 'loc':
'http://www.nasa.gov/feature/researchers-develop-new-tool-to-evaluate-iceph
obic-materials', 'tag': 'url'}

{'lastmod': '2017-10-11T17:382"', 'loc':
'http://www.nasa.gov/centers/ames/entry-systems—-vehicle-development/roster.
html', 'tag': 'url'}

{'lastmod': '2017-10-11T17:382"', 'loc':
'http://www.nasa.gov/centers/ames/entry-systems-vehicle-development/about.h
tml', 'tag': 'url'}

{'lastmod': '2017-10-11T17:2272"', 'loc':
'http://www.nasa.gov/centers/ames/earthscience/programs/MMS/instruments’',
'tag': 'url'}

{'lastmod': '2017-10-11T18:152"', 'loc':
'http://www.nasa.gov/centers/ames/earthscience/programs/MMS/onepager’,

'tag': 'url'}

{'lastmod': '2017-10-11T17:10Z2"', 'loc':
'http://www.nasa.gov/centers/ames/earthscience/programs/MMS', 'tag': 'url'}
{'lastmod': '2017-10-11T17:532"', 'loc':
'http://www.nasa.gov/feature/goddard/2017/nasa-s—james-webb-space-telescope
—and-the-big-bang-a-short-ga-with-nobel-laureate-dr-john', 'tag': 'url'}

{'lastmod': '2017-10-11T17:382"', 'loc':
'http://www.nasa.gov/centers/ames/entry-systems-vehicle-development/index.h
tml', 'tag': 'url'}

{'lastmod': '2017-10-11T15:212"', 'loc':
'http://www.nasa.gov/feature/mark-s-geyer-acting-deputy-associate-administr
ator-for-technical-human-explorations—-and-operations', 'tag': 'url'}

The program found 35,511 URLs throughout all of the nasa.gov sitemaps! The code only
printed the first 10 as this would have been quite a bit of output. Using this info to initialize
a crawl of all of these URLs will definitely take quite a long time!

But this is also the beauty of the sitemap. Many, if not all, of these results have a 1astmod
tag that tells you when the content at the end of that associated URL was last modified. If
you are implementing a polite crawler of nasa.gov, you would want to keep these URLs
and their timestamp in a database, and then before crawling that URL check to see if the
content has actually changed, and don't crawl if it hasn't.

[130]

Scraping - Code of Conduct Chapter 5

Now let's see how this actually worked.

How it works

The recipe works as follows:
1. The script starts by calling get_sitemap ():
map = sitemap.get_sitemap ("https://www.nasa.gov/sitemap.xml")

2. This is given a URL to the sitemap.xml file (or any other file - non-gzipped). The
implementation simply gets the content at the URL and returns it:

def get_sitemap (url):
get_url = requests.get (url)

if get_url.status_code == 200:
return get_url.text
else:
print ('Unable to fetch sitemap: %s.' % url)

3. The bulk of the work is done by passing that content to parse_sitemap().In

the case of nasa.gov, this sitemap contains the following content, a sitemap index
file:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl"
href="//www.nasa.gov/sitemap.xsl"?>

<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<sitemap><loc>http://www.nasa.gov/sitemap—-1.xml</loc><lastmod>2017-
10-11T19:30Z</lastmod></sitemap>
<sitemap><loc>http://www.nasa.gov/sitemap—-2.xml</loc><lastmod>2017-
10-11T19:30Z</lastmod></sitemap>
<sitemap><loc>http://www.nasa.gov/sitemap-3.xml</loc><lastmod>2017-
10-11T19:30Z</lastmod></sitemap>
<sitemap><loc>http://www.nasa.gov/sitemap—-4.xml</loc><lastmod>2017-
10-11T19:30Z</lastmod></sitemap>

</sitemapindex>

4. process_sitemap () starts with a call to process_sitemap ():

def parse_sitemap(s):
Sitemap = process_sitemap (s)

[131]

Scraping - Code of Conduct Chapter 5

5. This function starts by calling process_sitemap (), which returns a list of
Python dictionary objects with 1oc, lastmod, changeFreq, and priority key
value pairs:

def process_sitemap(s):
soup = BeautifulSoup(s, "lxml")

result = []

for loc in soup.findAll('loc'):

item = {}

item['loc'] = loc.text

item['tag'] = loc.parent.name

if loc.parent.lastmod is not None:
item['lastmod'] = loc.parent.lastmod.text

if loc.parent.changeFreq is not None:
item['changeFreq'] = loc.parent.changeFreq.text

if loc.parent.priority is not None:
item['priority'] = loc.parent.priority.text

result.append (item)
return result

6. This is performed by parsing the sitemap using BeautifulSoup and 1xml.
The loc property is always set, and lastmod, changeFreq and priority are set
if there is an an associated XML tag. The .tag property itself just notes whether
this content was retrieved from a <sitemap> tag or a <url> tag (<loc> tags can
be on either).
parse_sitemap () then continues with processing those results one by one:

while sitemap:

candidate = sitemap.pop ()

if is_sub_sitemap (candidate) :
sub_sitemap = get_sitemap (candidate['loc'])
for i in process_sitemap (sub_sitemap) :

sitemap.append (i)

else:

result.append (candidate)

[132]

Scraping - Code of Conduct Chapter 5

7. Each item is examined. If it is from a sitemap index file (the URL ends in .xml and
the .tag is the sitemap), then we need to read that .xml file and parse its content,
whose results are placed into our list of items to process. In this example, four
sitemap files are identified, and each of these are read, processed, parsed, and
their URLs added to the result.

To

demonstrate some of this content, the following are the first few lines of

sitemap-1.xml:

<?xml version="1.0" encoding="UTF-8"7?>

<?xml-stylesheet type="text/xsl"
href="//www.nasa.gov/sitemap.xsl"?>

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url><loc>http://www.nasa.gov/</loc><changefreqg>daily</changefreg><
priority>1.0</priority></url>
<url><loc>http://www.nasa.gov/connect/apps.html</loc><lastmod>2017-
08-14T22:157</lastmod><changefreg>yearly</changefreg></url>
<url><loc>http://www.nasa.gov/socialmedia</loc><lastmod>2017-09-29T
21:477Z</lastmod><changefreg>monthly</changefreg></url>
<url><loc>http://www.nasa.gov/multimedia/imagegallery/iotd.html</lo
c><lastmod>2017-08-21T22:00Z</lastmod><changefreg>yearly</changefre
g></url>
<url><loc>http://www.nasa.gov/archive/archive/about/career/index.ht
ml</loc><lastmod>2017-08-04T02:317Z</lastmod><changefreg>yearly</cha
ngefregq></url>

Overall, this one sitemap has 11,006 lines, so roughly 11,000 URLs! And in total, as was
reported, there are 35,511 URLs across all three sitemaps.

There's more...

Sitemap files may also be zipped, and end in a .gz extension. This is because it likely
contains many URLs and the compression will save a lot of space. While the code we used
does not process gzip sitemap files, it is easy to add this using functions in the gzip library.

Scrapy also provides a facility for starting crawls using the sitemap. One of these is a
specialization of the Spider class, SitemapSpider. This class has the smarts to parse the
sitemap for you, and then start following the URLs. To demonstrate, the script
05/03_sitemap_scrapy.py will start the crawl at the nasa.gov top-level sitemap index:

import scrapy
from scrapy.crawler import CrawlerProcess

class Spider (scrapy.spiders.SitemapSpider) :

name

= 'spider'

[133]

Scraping - Code of Conduct Chapter 5

sitemap_urls = ['https://www.nasa.gov/sitemap.xml']

def parse(self, response):
print ("Parsing: ", response)

if __name_ == "__main__ ":
process = CrawlerProcess ({
'DOWNLOAD_DELAY': O,
'LOG_LEVEL': 'DEBUG'
)
process.crawl (Spider)
process.start ()

When running this, there will be a ton of output, as the spider is going to start crawling all
30000+ URLs. Early in the output, you will see output such as the following;:

2017-10-11 20:34:27 |[scrapy.core.engine] DEBUG: Crawled (200) <GET
https://www.nasa.gov/sitemap.xml> (referer: None)

2017-10-11 20:34:27 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (301) to <GET https://www.nasa.gov/sitemap-4.xml> from <GET
http://www.nasa.gov/sitemap—-4.xml>

2017-10-11 20:34:27 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (301) to <GET https://www.nasa.gov/sitemap-2.xml> from <GET
http://www.nasa.gov/sitemap—-2.xml>

2017-10-11 20:34:27 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (301) to <GET https://www.nasa.gov/sitemap-3.xml> from <GET
http://www.nasa.gov/sitemap—-3.xml>

2017-10-11 20:34:27 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (301) to <GET https://www.nasa.gov/sitemap-1.xml> from <GET
http://www.nasa.gov/sitemap—-1.xml>

2017-10-11 20:34:27 [scrapy.core.engine] DEBUG: Crawled (200) <GET
https://www.nasa.gov/sitemap-4.xml> (referer: None)

Scrapy has found all of the sitemaps and read in their content. Soon afterwards, you will
start to see a number of redirections and notifications that certain pages are being parsed:

2017-10-11 20:34:30 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (302) to <GET
https://www.nasa.gov/image-feature/jpl/pia21629/neptune-from-saturn/> from
<GET https://www.nasa.gov/image-feature/jpl/pia21629/neptune-from-saturn>
2017-10-11 20:34:30 [scrapy.downloadermiddlewares.redirect] DEBUG:
Redirecting (302) to <GET
https://www.nasa.gov/centers/ames/earthscience/members/nasaearthexchange/Ra
makrishna_Nemani/> from <GET
https://www.nasa.gov/centers/ames/earthscience/members/nasaearthexchang

[134]

Scraping - Code of Conduct Chapter 5

e/Ramakrishna_Nemani>

Parsing: <200
https://www.nasa.gov/exploration/systems/sls/multimedia/sls-hardware-being-
moved-on-kamag-transporter.html>

Parsing: <200 https://www.nasa.gov/exploration/systems/sls/M17-057.html>

Crawling with delays

Fast scraping is considered a bad practice. Continuously pounding a website for pages can
burn up CPU and bandwidth, and a robust site will identify you doing this and block your
IP. And if you are unlucky, you might get a nasty letter for violating terms of service!

The technique of delaying requests in your crawler depends upon how your crawler is
implemented. If you are using Scrapy, then you can set a parameter that informs the
crawler how long to wait between requests. In a simple crawler just sequentially processing
URLs in a list, you can insert a thread.sleep statement.

Things can get more complicated if you have implemented a distributed cluster of crawlers
that spread the load of page requests, such as using a message queue with competing
consumers. That can have a number of different solutions, which are beyond the scope
provided in this context.

Getting ready

We will examine using Scrapy with delays. The sample is in
05/04_scrape_with_delay.py.

How to do it

Scrapy by default imposes a delay of 0 seconds between page requests. That is, it does not
wait between requests by default.

1. This can be controlled using the DOWNLOAD_DELAY setting. To demonstrate, let's
run the script from the command line:

05 $ scrapy runspider 04_scrape_with_delay.py —-s LOG_LEVEL=WARNING
Parsing: <200 https://blog.scrapinghub.com>

Parsing: <200 https://blog.scrapinghub.com/page/2/>

Parsing: <200 https://blog.scrapinghub.com/page/3/>

Parsing: <200 https://blog.scrapinghub.com/page/4/>

[135]

Scraping - Code of Conduct

Chapter 5

Parsing:
Parsing:
Parsing:
Parsing:
Parsing:
Parsing:
Parsing:
Total run time:

&1t;200 https://blog.scrapinghub.com/page/5/>

<200
<200
<200
<200
<200
<200

https:
https:
https:
https:
https:
https:

//blog.
//blog.
//blog.
//blog.
//blog.
//blog.
0:00:07.006148

scrapinghub.
scrapinghub.
scrapinghub.
scrapinghub.
scrapinghub.
scrapinghub.

Michaels-iMac-2:05 michaelheydt$

com/page/6/>
com/page/7/>
com/page/8/>
com/page/9/>
com/page/10/>
com/page/11/>

This crawls all of the pages at blog.scrapinghub.com, and reports the total time to perform

the crawl. LOG_LEVEL=WARNING removes most logging output and just gives out the output
from print statements. This used the default wait between pages of 0 and resulted in a crawl
roughly seven seconds in length.

2. The wait between pages can be set using the DOWNLOAD_DELAY setting. The
following delays for five seconds between page requests:

05 $ scrapy runspider 04_scrape_with_delay.py —-s DOWNLOAD_DELAY=5 -
s LOG_LEVEL=WARNING

Parsing:
Parsing:
Parsing:
Parsing:
Parsing:
Parsing:
Parsing:
Parsing:
Parsing:
Parsing:
Parsing:
Total run time:

<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200

https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:

//blog.
//blog.
//blog.
//blog.
//blog.
//blog.
//blog.
//blog.
//blog.
//blog.
//blog.
0:01:01.099267

scrapinghub.
scrapinghub.
scrapinghub.
scrapinghub.
scrapinghub.
scrapinghub.
scrapinghub.
scrapinghub.
scrapinghub.
scrapinghub.
scrapinghub.

com>
com/page/2/>
com/page/3/>
com/page/4/>
com/page/5/>
com/page/6/>
com/page/7/>
com/page/8/>
com/page/9/>
com/page/10/>
com/page/11/>

By default, this does not actually wait 5 seconds. It will wait DOWNLOAD_DELAY seconds, but
by a random factor between 0.5 and 1.5 times DOWNLOAD_DELAY. Why do this? This makes
your crawler look "less robotic." You can turn this off by using
theRANDOMIZED_DOWNLOAD_DELAY=FalseSeﬁhq;

[136]

Scraping - Code of Conduct Chapter 5

How it works

This crawler is implemented as a Scrapy spider. The class definition begins with declaring
the spider name and the start URL:

class Spider (scrapy.Spider):

name = 'spider'
start_urls = ['https://blog.scrapinghub.com']

The parse method looks for CSS 'div.prev-post > a', and follows those links.

The scraper also defines a close method, which is called by Scrapy when the crawl is
complete:

def close(spider, reason):

start_time = spider.crawler.stats.get_value('start_time')
finish_time = spider.crawler.stats.get_value('finish_time'")
print ("Total run time: ", finish_time-start_time)

This accesses the spiders crawler stats object, retrieves the start and finish time for the
spider, and reports the difference to the user.

There's more...
The script also defines code for when executing the script directly with Python:

if name == "_ _main__ ":

process = CrawlerProcess ({
'DOWNLOAD_DELAY': 5,
'RANDOMIZED_DOWNLOAD_DELAY': False,
'LOG_LEVEL': 'DEBUG'

)

process.crawl (Spider)

process.start ()

This begins by creating a CrawlerProcess object. This object can be passed a dictionary
representing the settings and values to configure the crawl with. This defaults to a five-
second delay, without randomization, and an output level of DEBUG.

[137]

Scraping - Code of Conduct Chapter 5

Using identifiable user agents

What happens if you violate the terms of service and get flagged by the website owner?
How can you help the site owners in contacting you, so that they can nicely ask you to back
off to what they consider a reasonable level of scraping?

What you can do to facilitate this is add info about yourself in the User-Agent header of the
requests. We have seen an example of this in robots. txt files, such as from amazon.com.
In their robots. txt is an explicit statement of a user agent for Google: GoogleBot.

During scraping, you can embed your own information within the User-Agent header of
the HTTP requests. To be polite, you can enter something such as ' MyCompany-MyCrawler
(mybot@mycompany.com)'. The remote server, if tagging you in violation, will definitely be
capturing this information, and if provided like this, it gives them a convenient means of
contacting your instead of just shutting you down.

How to do it

Setting the user agent differs depending upon what tools you use. Ultimately, it is just
ensuring that the User-Agent header is set to a string that you specify. When using a
browser, this is normally set by the browser to identity the browser and the operating
system. But you can put anything you want into this header. When using requests, it is very
straightforward:

url = 'https://api.github.com/some/endpoint'
headers = {'user-agent': 'MyCompany-MyCrawler (mybot@mycompany.com)"'}
r = requests.get (url, headers=headers)

When using Scrapy, it is as simple as configuring a setting:

process = CrawlerProcess ({
'USER_AGENT': 'MyCompany-MyCrawler (mybot@mycompany.com)'
)
process.crawl (Spider)
process.start ()

How it works

Outgoing HTTP requests have a number of different headers. These ensure that the User-
Agent header is set to this value for all requests made of the target web server.

[138]

Scraping - Code of Conduct Chapter 5

There's more...

While it is possible to set any content you want in the User-Agent header, some web servers
will inspect the User-Agent header and make decisions on how to respond based upon the
content. A common example of this is using the header to identify mobile devices to
provide a mobile presentation.

But some sites also only allow access to content to specific User-Agent values. Setting your
own value could have the effect of having the web server not respond or return other
errors, such as unauthorized. So when you use this technique, make sure to check it will
work.

Setting the number of concurrent requests
per domain

It is generally inefficient to crawl a site one URL at a time. Therefore, there is normally a
number of simultaneous page requests made to the target site at any given time. Normally,
the remote web server can quite effectively handle multiple simultaneous requests, and on
your end you are just waiting for data to come back in for each, so concurrency generally
works well for your scraper.

But this is also a pattern that smart websites can identify and flag as suspicious activity.
And there are practical limits on both your crawler's end and the website. The more
concurrent requests that are made, the more memory, CPU, network connections, and
network bandwidth is required on both sides. These have costs involved, and there are
practical limits on these values too.

So it is generally a good practice to set a limit on the number of requests that you will
simultaneously make to any web server.

How it works

There are number of techniques that can be used to control concurrency levels, and the
process can often be quite complicated with controlling multiple requests and threads of
execution. We won't discuss here how this is done at the thread level and only mention the
construct built into Scrapy.

[139]

Scraping - Code of Conduct Chapter 5

Scrapy is inherently concurrent in its requests. By default, Scrapy will dispatch at most
eight simultaneous requests to any given domain. You can change this using the
CONCURRENT_REQUESTS_PER_DOMAIN setting. The following sets the value to 1 concurrent

request:

process = CrawlerProcess ({
'"CONCURRENT_REQUESTS_PER_DOMAIN': 1

H)
process.crawl (Spider)
process.start ()

Using auto throttling

Fairly closely tied to controlling the maximum level of concurrency is the concept of
throttling. Websites vary in their ability to handle requests, both across multiple websites
and on a single website at different times. During periods of slower response times, it
makes sense to lighten up of the number of requests during that time. This can be a tedious
process to monitor and adjust by hand.

Fortunately for us, scrapy also provides an ability to do this via an extension named
AutoThrottle.

How to do it

AutoThrottle can easily be configured using the AUTOTHROTTLE_TARGET_CONCURRENCY
setting:
process = CrawlerProcess ({

'AUTOTHROTTLE_TARGET_CONCURRENCY': 3
H)

process.crawl (Spider)
process.start ()

How it works

scrapy tracks the latency on each request. Using that information, it can adjust the delay
between requests to a specific domain so that there are no more than
AUTOTHROTTLE_TARGET_CONCURRENCY requests simultaneously active for that domain,
and that the requests are evenly distributed in any given time span.

[140]

Scraping - Code of Conduct Chapter 5

There's more...

There are lot of options for controlling throttling. You can get an overview of them

at https://doc.scrapy.org/en/latest/topics/autothrottle.html?&_ga=2.54316072.140
4351387.1507758575-507079265.1505263737#settings.

Using an HTTP cache for development

The development of a web crawler is a process of exploration, and one that will iterate
through various refinements to retrieve the requested information. During the development
process, you will often be hitting remote servers, and the same URLs on those servers, over
and over. This is not polite. Fortunately, scrapy also comes to the rescue by providing
caching middleware that is specifically designed to help in this situation.

How to do it

Scrapy will cache requests using a middleware module named HttpCacheMiddleware.
Enabling it is as simple as configuring the HTTPCACHE_ENABLED setting to True:

process = CrawlerProcess ({
'AUTOTHROTTLE_TARGET_CONCURRENCY': 3

H)
process.crawl (Spider)
process.start ()

How it works

The implementation of HTTP caching is simple, yet complex at the same time. The
HttpCacheMiddleware provided by Scrapy has a plethora of configuration options based
upon your needs. Ultimately, it comes down to storing each URL and its content in a store
along with an associated duration for cache expiration. If a second request is made for a
URL within the expiration interval, then the local copy will be retrieved instead of making a
remote request. If the time has expired, then the contents are fetched from the web server,
stored in the cache, and a new expiration time set.

[141]

https://doc.scrapy.org/en/latest/topics/autothrottle.html?&_ga=2.54316072.1404351387.1507758575-507079265.1505263737#settings
https://doc.scrapy.org/en/latest/topics/autothrottle.html?&_ga=2.54316072.1404351387.1507758575-507079265.1505263737#settings
https://doc.scrapy.org/en/latest/topics/autothrottle.html?&_ga=2.54316072.1404351387.1507758575-507079265.1505263737#settings

Scraping - Code of Conduct Chapter 5

There's more...

There are many options for configuration scrapy caching, including means of storing
content (file system, DBM, or LevelDB), cache policies, and how Http Cache-Control
directives from the server are handled. To explore these options, check out the following

URL: https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.
50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.

[142]

https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.
https://doc.scrapy.org/en/latest/topics/downloader-middleware.html?_ga=2.50242598.1404351387.1507758575-507079265.1505263737#dummy-policy-default.

Scraping Challenges and
Solutions

In this chapter, we will cover:

¢ Retrying failed page downloads

¢ Supporting page redirects

e Waiting for content to be available in Selenium
¢ Limiting crawling to a single domain

e Processing infinitely scrolling pages

¢ Controlling the depth of a crawl

¢ Controlling the length of a crawl

¢ Handling paginated websites

¢ Handling forms and form-based authorization
¢ Handling basic authorization

¢ Preventing bans by scraping via proxies

e Randomizing user agents

¢ Caching responses

Scraping Challenges and Solutions Chapter 6

Introduction

Developing a reliable scraper is never easy, there are so many what ifs that we need to take
into account. What if the website goes down? What if the response returns unexpected
data? What if your IP is throttled or blocked? What if authentication is required? While we
can never predict and cover all what ifs, we will discuss some common traps, challenges,
and workarounds.

Note that several of the recipes require access to a website that I have provided as a Docker
container. They require more logic than the simple, static site we used in earlier chapters.
Therefore, you will need to pull and run a Docker container using the following Docker
commands:

docker pull mheydt/pywebscrapecookbook
docker run -p 5001:5001 pywebscrapecookbook

Retrying failed page downloads

Failed page requests can be easily handled by Scrapy using retry middleware. When
installed, Scrapy will attempt retries when receiving the following HTTP error codes:

[500, 502, 503, 504, 408]
The process can be further configured using the following parameters:

e RETRY_ENABLED (True/False - default is True)
® RETRY_TIMES (# of times to retry on any errors - default is 2)

e RETRY_HTTP_CODES (a list of HTTP error codes which should be retried - default
is [500, 502, 503, 504, 408])

How to do it

The 06/01_scrapy_retry.py script demonstrates how to configure Scrapy for retries. The
script file contains the following configuration for Scrapy:

process = CrawlerProcess ({
'"LOG_LEVEL': 'DEBUG',
'DOWNLOADER_MIDDLEWARES':
{

"scrapy.downloadermiddlewares.retry.RetryMiddleware": 500

[144]

Scraping Challenges and Solutions Chapter 6

by
'RETRY_ENABLED': True,
'RETRY_TIMES': 3

})
process.crawl (Spider)
process.start ()

How it works

Scrapy will pick up the configuration for retries as specified when the spider is run. When
encountering errors, Scrapy will retry up to three times before giving up.

Supporting page redirects

Page redirects in Scrapy are handled using redirect middleware, which is enabled by
default. The process can be further configured using the following parameters:

e REDIRECT_ENABLED: (True/False - default is True)

e REDIRECT_MAX_TIMES: (The maximum number of redirections to follow for any
single request - default is 20)

How to do it

The scriptin 06/02_scrapy_redirects.py demonstrates how to configure Scrapy to
handle redirects. This configures a maximum of two redirects for any page. Running the
script reads the NASA sitemap and crawls that content. This contains a large number of
redirects, many of which are redirects from HTTP to HTTPS versions of URLs. There will be
a lot of output, but here are a few lines demonstrating the output:

Parsing: <200 https://www.nasa.gov/content/earth-expeditions—above/>
['http://www.nasa.gov/content/earth-expeditions—-above',
'https://www.nasa.gov/content/earth-expeditions—above']

This particular URL was processed after one redirection, from an HTTP to an HTTPS
version of the URL. The list defines all of the URLs that were involved in the redirection.

[145]

Scraping Challenges and Solutions Chapter 6

You will also be able to see where redirection exceeded the specified level (2) in the output
pages. The following is one example:

2017-10-22 17:55:00 [scrapy.downloadermiddlewares.redirect] DEBUG:

Discarding <GET http://www.nasa.gov/topics/Jjourneytomars/news/index.html>:
max redirections reached

How it works
The spider is defined as the following:

class Spider (scrapy.spiders.SitemapSpider) :
name = 'spider'
sitemap_urls = ['https://www.nasa.gov/sitemap.xml']

def parse(self, response):
print ("Parsing: ", response)
print (response.request.meta.get ('redirect_urls'))

This is identical to our previous NASA sitemap based crawler, with the addition of one line
printing the redirect_urls. In any call to parse, this metadata will contain all redirects
that occurred to get to this page.

The crawling process is configured with the following code:

process = CrawlerProcess ({
'LOG_LEVEL': 'DEBUG',
'DOWNLOADER_MIDDLEWARES' :
{
"scrapy.downloadermiddlewares.redirect.RedirectMiddleware": 500
}I
'REDIRECT_ENABLED': True,
'REDIRECT_MAX_TIMES': 2
})

Redirect is enabled by default, but this sets the maximum number of redirects to 2 instead
of the default of 20.

[146]

Scraping Challenges and Solutions Chapter 6

Waiting for content to be available in
Selenium

A common problem with dynamic web pages is that even after the whole page has loaded,
and hence the get () method in Selenium has returned, there still may be content that we
need to access later as there are outstanding Ajax requests from the page that are still
pending completion. An example of this is needing to click a button, but the button not
being enabled until all data has been loaded asyncronously to the page after loading.

Take the following page as an example: http://the-internet.herokuapp.com/dynamic_
loading/2. This page finishes loading very quickly and presents us with a Start button:

& C () @ the-internet.herokuapp.com/dynamic_loading/2

Dynamically Loaded Page Elements

Example 2: Element rendered after the fact

=]

Powered by Elemental Selenium

The Start button presented on screen

When pressing the button, we are presented with a progress bar for five seconds:

& C {1 @ the-internet.herokuapp.com/dynamic_loading/2

Dynamically Loaded Page Elements

Example 2: Element rendered after the fact

Loading...

Powered by Elemental Selenium

The status bar while waiting

[147]

http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2
http://the-internet.herokuapp.com/dynamic_loading/2

Scraping Challenges and Solutions Chapter 6

And when this is completed, we are presented with Hello World!

& C {7 @ the-internet.herokuapp.com/dynamic_loading/2

Dynamically Loaded Page Elements

Example 2: Element rendered after the fact

Hello World!

Powered by Elemental Selenium

After the page is completely rendered

Now suppose we want to scrape this page to get the content that is exposed only after the
button is pressed and after the wait? How do we do this?

How to do it

We can do this using Selenium. We will use two features of Selenium. The first is the ability
to click on page elements. The second is the ability to wait until an element with a specific
ID is available on the page.

1. First, we get the button and click it. The button's HTML is the following;:

<div id='start'>
<button>Start</button>
</div>

2. When the button is pressed and the load completes, the following HTML is
added to the document:

<div id='finish'>
<h4>Hello World!"</h4>
</div>

[148]

Scraping Challenges and Solutions Chapter 6

3. We will use the Selenium driver to find the Start button, click it, and then wait
until a div withanID of ' finish" is available. Then we get that element and
return the text in the enclosed <h4> tag.

You can try this by running 06/03_press_and_wait.py. It's output will be the following:

clicked
Hello World!

Now let's see how it worked.

How it works

Let us break down the explanation:
1. We start by importing the required items from Selenium:

from selenium import webdriver
from selenium.webdriver.support import ui

2. Now we load the driver and the page:

driver = webdriver.PhantomdS ()
driver.get ("http://the-internet.herokuapp.com/dynamic_loading/2")

3. With the page loaded, we can retrieve the button:

button =
driver.find_element_by_xpath("//*/div[@id="start']/button")

4. And then we can click the button:

button.click ()
print ("clicked")

[149]

Scraping Challenges and Solutions Chapter 6

5. Next we create a WebDriverWait object:
wait = ui.WebDriverWait (driver, 10)

6. With this object, we can request Selenium's UI wait for certain events. This also
sets a maximum wait of 10 seconds. Now using this, we can wait until we meet a
criterion; that an element is identifiable using the following XPath:

wait.until (lambda driver:
driver.find_element_by_xpath("//*/div[@id="'finish']"))

7. When this completes, we can retrieve the h4 element and get its enclosing text:

finish_element=driver.find_element_by_xpath ("//*/div[@id="finish']/
h4")
print (finish_element.text)

Limiting crawling to a single domain

We can inform Scrapy to limit the crawl to only pages within a specified set of domains.
This is an important task, as links can point to anywhere on the web, and we often want to
control where crawls end up going. Scrapy makes this very easy to do. All that needs to be
done is setting the allowed_domains field of your scraper class.

How to do it

The code for this example is 06/04_allowed_domains.py. You can run the script with
your Python interpreter. It will execute and generate a ton of output, but if you keep an eye
on it, you will see that it only processes pages on nasa.gov.

[150]

Scraping Challenges and Solutions Chapter 6

How it works

The code is the same as previous NASA site crawlers except that we include
allowed_domains=['nasa.gov']:

class Spider (scrapy.spiders.SitemapSpider) :

name = 'spider'
sitemap_urls = ['https://www.nasa.gov/sitemap.xml']
allowed_domains=['nasa.gov']

def parse(self, response):

print ("Parsing: ", response)

The NASA site is fairly consistent with staying within its root domain, but there are
occasional links to other sites such as content on boeing.com. This code will prevent moving
to those external sites.

Processing infinitely scrolling pages

Many websites have replaced "previous/next" pagination buttons with an infinite scrolling
mechanism. These websites use this technique to load more data when the user has reached
the bottom of the page. Because of this, strategies for crawling by following the "next page"
link fall apart.

While this would seem to be a case for using browser automation to simulate the scrolling,
it's actually quite easy to figure out the web pages' Ajax requests and use those for crawling
instead of the actual page. Let's look at spidyquotes.herokuapp.com/scroll asan
example.

[151]

Scraping Challenges and Solutions Chapter 6

Getting ready

Open http://spidyquotes.herokuapp.com/scroll in your browser. This page will load
additional content when you scroll to the bottom of the page:

Quotes to Scrape Login

“The world as we have created it is a process of our thinking. If cannot be changed without
changing our thinking.”
by Albert Einstein

eed change] deop-thoughts Jthinkng [world |

‘It is our choices, Harry, that show what we truly are, far more than our abilities.”
by J.K. Rowling

Tags:

“There are only two ways to live your life. One is as though nothing is a miracle. The other
is as though everything is a miracle.”
by Albert Einstein

e inspirational L ife Jive] miracie § miracles

“The person, be it gentleman or lady, who has not pleasure in a good novel, must be
intolerably stupid.”
by Jane Austen

e aiteracy | bookcs | classic J humor

‘Imperfection is beauty, madness is genius and it's better to be absolutely ridiculous than
absolutely boring.”
by Marilyn Monroe

Tags:

Screenshot of the quotes to scrape

[152]

http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll
http://spidyquotes.herokuapp.com/scroll

Scraping Challenges and Solutions

Chapter 6

Once the page is open, go into your developer tools and select the network panel. Then,
scroll to the bottom of the page. You will see new content in the network panel:

“Try not to become a man of success. Rather become a man of
value.”

by Albert Einstein

L0 strood success] vaie

“It is better to be hated for what you are than to be loved for what
you are not.”
by André Gide

Tegs: () €D

“I have not failed. I've just found 10,000 ways that won't work.”
by Thomas A. Edison

5 edison] faiure | inspirationi | paraphrased

“A woman is like a tea bag; you never know how strong it is until
it's in hot water.”

by Eleanor Roosevelt

Tags:

“A day without sunshine is like, you know, night.”
by Steve Martin

LY humor] ovious L simic]

“I love you without knowing how, or when, or from where. ! love
you simply, without problems or pride: | love you in this way
because | do not know any other way of loving but this, in which
there is no | or you, so intimate that your hand upon my chest is
my hand, so intimate that when | fall asleep your eyes close.”
by Pablo Neruda

Tags: (77)

X i Elements Console Sources Network > 92 : X
® © m®W ¥ | View = = [J Groupbyframe | [J Preservelog [Disable
|Filter \‘ Regex [| Hide data URLs

s XHR JS C8S Img Media Font Doc WS Manifest Other

| 100 ms 200 ms 300 ms. 400 ms 500 ms
Name St... Type Initiator Size Time |Waterfall &0
|_| quotes?page=2 200 xhr jqueryjs:4 49.. 32.. — |

__| quotes?page=3 200 xhr jqueryjs:4 3.2.. 29.. RN

|| quotes?page=4 429 xhr jqueryjs:4 32.. 29..| =N

|| quotes?page=5 429 xhr jqueryjs:4 32... 23... o

4 requests | 8.7 KB transferred

Screenshot of the developer tools options

When we click on one of the links, we can see the following JSON:

{
"has_next":
"page": 2,
"quotes": [{
"author": {
"goodreads_link":
"name": "Marilyn Monroe",
"slug": "Marilyn-Monroe"

true,

"/author/show/82952 .Marilyn_Monroe",

[153]

Scraping Challenges and Solutions Chapter 6

iy

"tags": ["friends", "heartbreak", "inspirational", "life", "love",
"sisters"],

"text": "\u201lcThis life is what you make it...."

oA

"author": {

"goodreads_1link": "/author/show/1077326.J_K_Rowling",

"name": "J.K. Rowling",

"slug": "J-K-Rowling"

}I

"tags": ["courage", "friends"],

"text": "\u20lcIt takes a great deal of bravery to stand up to our enemies,

but Jjust as much to stand up to our friends.\u201d"
b

This is great because all we need to do is continually generate requests to
/api/quotes?page=x, increasing x until the has_next tag exists in the reply document. If
there are no more pages, then this tag will not be in the document.

How to do it

The 06/05_scrapy_continuous.py file contains a Scrapy agent, which crawls this set of
pages. Run it with your Python interpreter and you will see output similar to the following
(the following is multiple excerpts from the output):

<200 http://spidyquotes.herokuapp.com/api/quotes?page=2>
2017-10-29 16:17:37 [scrapy.core.scraper] DEBUG: Scraped from <200
http://spidyquotes.herokuapp.com/api/quotes?page=2>

{'text': "“This life is what you make it. No matter what, you're going to
mess up sometimes, it's a universal truth. But the good part is you get to
decide how you're going to mess it up. Girls will be your friends - they'll

act like it anyway. But just remember, some come, some go. The ones that
stay with you through everything - they're your true best friends. Don't
let go of them. Also remember, sisters make the best friends in the world.
As for lovers, well, they'll come and go too. And baby, I hate to say it,
most of them - actually pretty much all of them are going to break your
heart, but you can't give up because if you give up, you'll never find your
soulmate. You'll never find that half who makes you whole and that goes for
everything. Just because you fail once, doesn't mean you're gonna fail at
everything. Keep trying, hold on, and always, always, always believe in
yourself, because if you don't, then who will, sweetie? So keep your head
high, keep your chin up, and most importantly, keep smiling, because life's
a beautiful thing and there's so much to smile about.”", 'author': 'Marilyn
Monroe', 'tags': ['friends', 'heartbreak', 'inspirational', 'life', 'love',
'sisters']}

[154]

Scraping Challenges and Solutions Chapter 6

2017-10-29 16:17:37 [scrapy.core.scraper] DEBUG: Scraped from <200
http://spidyquotes.herokuapp.com/api/quotes?page=2>

{'text': '“It takes a great deal of bravery to stand up to our enemies, but
just as much to stand up to our friends.”', 'author': 'J.K. Rowling',
'tags': ['courage', 'friends']}

2017-10-29 16:17:37 [scrapy.core.scraper] DEBUG: Scraped from <200
http://spidyquotes.herokuapp.com/api/quotes?page=2>

{'text': "“If you can't explain it to a six year old, you don't understand
it yourself.”", 'author': 'Albert Einstein', 'tags': ['simplicity"',
'understand'] }

When this gets to page 10 it will stop as it will see that there is no next page flag set in the
content.

How it works

Let's walk through the spider to see how this works. The spider starts with the following
definition of the start URL:

class Spider (scrapy.Spider):

name = 'spidyquotes'
quotes_base_url = 'http://spidyquotes.herokuapp.com/api/quotes’
start_urls = [quotes_base_url]

download_delay = 1.5

The parse method then prints the response and also parses the JSON into the data variable:
def parse(self, response):

(
print (response)
data = json.loads (response.body)

Then it loops through all the items in the quotes element of the JSON objects. For each item,
it yields a new Scrapy item back to the Scrapy engine:

for item in data.get ('quotes', []):

yield {
'text': item.get ('text'),
'author': item.get ('author', {}).get ('name'),

'tags': item.get ('tags'),

[155]

Scraping Challenges and Solutions Chapter 6

It then checks to see if the data JSON variable has a 'has_next ' property, and if so it gets
the next page and yields a new request back to Scrapy to parse the next page:

if data['has_next']:
next_page = data['page'] + 1
yield scrapy.Request (self.quotes_base_url + "?page=%s" % next_page)

There's more...

It is also possible to process infinite, scrolling pages using Selenium. The following code is
in 06/06_scrape_continuous_twitter.py:

from selenium import webdriver
import time

driver = webdriver.PhantomdsS ()

print ("Starting")
driver.get ("https://twitter.com")
scroll _pause_time = 1.5

Get scroll height
last_height = driver.execute_script ("return document.body.scrollHeight")
while True:
print (last_height)
Scroll down to bottom
driver.execute_script ("window.scrollTo (O,
document .body.scrollHeight) ;")

Wait to load page
time.sleep(scroll_pause_time)

Calculate new scroll height and compare with last scroll height
new_height = driver.execute_script ("return document.body.scrollHeight")
print (new_height, last_height)

if new_height == last_height:
break
last_height = new_height

[156]

Scraping Challenges and Solutions Chapter 6

The output would be similar to the following:

Starting

4882

8139 4882

8139

11630 8139

11630

15055 11630

15055

15055 15055

Process finished with exit code 0

This code starts by loading the page from Twitter. The call to . get () will return when the
page is fully loaded. The scrollHeight is then retrieved, and the program scrolls to that
height and waits for a moment for the new content to load. The scrollHeight of the
browser is retrieved again, and if different than 1ast_height, it will loop and continue
processing. If the same as 1ast_height, no new content has loaded and you can then
continue on and retrieve the HTML for the completed page.

Controlling the depth of a crawl

The depth of a crawl can be controlled using Scrapy DepthMiddleware middleware. The
depth middleware limits the number of follows that Scrapy will take from any given link.
This option can be useful for controlling how deep you go into a particular crawl. This is
also used to keep a crawl from going on too long, and useful if you know that the content
you are crawling for is located within a certain number of degrees of separation from the
pages at the start of your crawl.

How to do it

The depth control middleware is installed in the middleware pipeline by default. An
example of depth limiting is contained in the 06/06_limit_depth.py script. This script
crawls the static site provided with the source code on port 8080, and allows you to
configure the depth limit. This site consists of three levels: 0, 1, and 2, and has three pages at
each level. The files are named CrawlDepth<level><pagenumber>.html. Page 1 on each
level links to the other two pages on the same level, as well as to the first page on the next
level. Links to higher levels end at level 2. This structure is great for examining how depth
processing is handled in Scrapy.

[157]

Scraping Challenges and Solutions Chapter 6

How it works
The limiting of depth can be performed by setting the DEPTH_LIMIT parameter:

process = CrawlerProcess ({
'LOG_LEVEL': 'CRITICAL',
'DEPTH_LIMIT': 2,
'DEPT_STATS': True

)

A depth limit of 1 means we will only crawl one level, which means it will process the URLs
specified in start_urls, and then any URLs found within those pages. With
DEPTH_LIMIT we get the following output:

Parsing: <200 http://localhost:8080/CrawlDepth0-1.html>

Requesting crawl of: http://localhost:8080/CrawlDepth0-2.html

Requesting crawl of: http://localhost:8080/Depthl/CrawlDepthl-1.html
Parsing: <200 http://localhost:8080/Depthl/CrawlDepthl-1.html>

Requesting crawl of: http://localhost:8080/Depthl/CrawlDepthl-2.html
Requesting crawl of: http://localhost:8080/Depthl/depthl/CrawlDepthl-2.html
Requesting crawl of: http://localhost:8080/Depthl/depth2/CrawlDepth2-1.html
Parsing: <200 http://localhost:8080/CrawlDepth0-2.html>

Requesting crawl of: http://localhost:8080/CrawlDepth0-3.html
<scrapy.statscollectors.MemoryStatsCollector object at 0x109f754e0>
Crawled: ['http://localhost:8080/CrawlDepthO-1.html"',
'http://localhost:8080/Depthl/CrawlDepthl-1.html",
'http://localhost:8080/CrawlDepth0-2.html"]

Requested: ['http://localhost:8080/CrawlDepth0O-2.html"',
'http://localhost:8080/Depthl/CrawlDepthl-1.html",
'http://localhost:8080/Depthl/CrawlDepthl-2.html",
'http://localhost:8080/Depthl/depthl/CrawlDepthl-2.html"',
'http://localhost:8080/Depthl/depth2/CrawlDepth2-1.html"',
'http://localhost:8080/CrawlDepth0-3.html"]

The crawl starts with CrawlDepth0-1.html. That page has two lines, one to
CrawlDepth0-2.html and one to CrawlDepthl-1.html. They are then requested to be
parsed. Considering that the start page is at depth 0, those pages are at depth 1, the limit of
our depth. Therefore, we will see those two pages being parsed. However, note that all the
links from those two pages, although requesting to be parsed, are then ignored by Scrapy as
they are at depth 2, which exceeds the specified limit.

[158]

Scraping Challenges and Solutions Chapter 6

Now change the depth limit to 2:

process = CrawlerProcess ({
'LOG_LEVEL': 'CRITICAL',
'DEPTH_LIMIT': 2,
'DEPT_STATS': True

)

The output then becomes as follows:

Parsing: <200 http://localhost:8080/CrawlDepthO-1.html>

Requesting crawl of: http://localhost:8080/CrawlDepth0-2.html
Requesting crawl of: http://localhost:8080/Depthl/CrawlDepthl-1.html
Parsing: <200 http://localhost:8080/Depthl/CrawlDepthl-1.html>
Requesting crawl of: http://localhost:8080/Depthl/CrawlDepthl-2.html
Requesting crawl of: http://localhost:8080/Depthl/depthl/CrawlDepthl-2.html
Requesting crawl of: http://localhost:8080/Depthl/depth2/CrawlDepth2-1.html
Parsing: <200 http://localhost:8080/CrawlDepth0-2.html>

Requesting crawl of: http://localhost:8080/CrawlDepth0-3.html
Parsing: <200 http://localhost:8080/Depthl/depth2/CrawlDepth2-1.html>
Parsing: <200 http://localhost:8080/CrawlDepth0-3.html>

Parsing: <200 http://localhost:8080/Depthl/CrawlDepthl-2.html>
Requesting crawl of: http://localhost:8080/Depthl/CrawlDepthl1-3.html
<scrapy.statscollectors.MemoryStatsCollector object at 0x10d3d44e0>
Crawled: ['http://localhost:8080/CrawlDepthO-1.html"',
'http://localhost:8080/Depthl/CrawlDepthl-1.html",
'http://localhost:8080/CrawlDepth0-2.html",
'http://localhost:8080/Depthl/depth2/CrawlDepth2-1.html"',
'http://localhost:8080/CrawlDepth0-3.html",
'http://localhost:8080/Depthl/CrawlDepthl-2.html"']

Requested: ['http://localhost:8080/CrawlDepth0-2.html"',
'http://localhost:8080/Depthl/CrawlDepthl-1.html",
'http://localhost:8080/Depthl/CrawlDepthl-2.html",
'http://localhost:8080/Depthl/depthl/CrawlDepthl-2.html",
'http://localhost:8080/Depthl/depth2/CrawlDepth2-1.html"',
'http://localhost:8080/CrawlDepth0-3.html",
'http://localhost:8080/Depthl/CrawlDepthl-3.html"']

Note that the three pages previously ignored with DEPTH_LIMIT set to 1 are now parsed.
And now, links found at that depth, such as for the page CrawlDepthl1-3.html, are now
ignored as their depth exceeds 2.

[159]

Scraping Challenges and Solutions Chapter 6

Controlling the length of a crawl

The length of a crawl], in terms of number of pages that can be parsed, can be controlled
with the CLOSESPIDER_PAGECOUNT setting.

How to do it

We will be using the scriptin 06/07_1imit_length.py. The script and scraper are the
same as the NASA sitemap crawler with the addition of the following configuration to limit
the number of pages parsed to 5:

p— |

if _ name_ == "_ main__ ":
process = CrawlerProcess ({
'"LOG_LEVEL': 'INFO',
'CLOSESPIDER_PAGECOUNT': 5
)
process.crawl (Spider)
process.start ()

When this is run, the following output will be generated (interspersed in the logging
output):

<200
https://www.nasa.gov/exploration/systems/sls/multimedia/sls-hardware-being-
moved-on-kamag-transporter.html>

<200 https://www.nasa.gov/exploration/systems/sls/M17-057.html>

<200
https://www.nasa.gov/press-release/nasa-awards-contract-for-center-protecti
ve-services-for-glenn-research-center/>

<200 https://www.nasa.gov/centers/marshall/news/news/icymil708025/>

<200
https://www.nasa.gov/content/oracles—-completed-suit-case-flight-series-to-a
scension—-island/>

<200
https://www.nasa.gov/feature/goddard/2017/asteroid-sample-return-mission-su
ccessfully—-adjusts—course/>

<200 https://www.nasa.gov/image-feature/jpl/pia21754/juling-crater/>

How it works

Note that we set the page limit to 5, but the example actually parsed 7 pages. The value
for CLOSESPIDER_PAGECOUNT should be considered a value that Scrapy will do as a
minimum, but which may be exceeded by a small amount.

[160]

Scraping Challenges and Solutions Chapter 6

Handling paginated websites

Pagination breaks large sets of content into a number of pages. Normally, these pages have
a previous/next page link for the user to click. These links can generally be found with
XPath or other means and then followed to get to the next page (or previous). Let's examine
how to traverse across pages with Scrapy. We'll look at a hypothetical example of crawling
the results of an automated internet search. The techniques directly apply to many
commercial sites with search capabilities, and are easily modified for those situations.

Getting ready

We will demonstrate handling pagination with an example that crawls a set of pages from
the website in the provided container. This website models five pages with previous and
next links on each page, along with some embedded data within each page that we will
extract.

The first page of the set can be seen
athttp://localhost:5001/pagination/pagel.html. The following image shows this

page open, and we are inspecting the Next button:

Mike:

| Pagination - Page 1 x XY
&« C 1} | @ localhost:5001/pagination/pagel.html @ | ¢
® (1] Eements Console » PoX
« Prev 2 3 4 5 Next » v<1li class="button
v<a class="next" href
page2. html
"Next" == $0

siafter
/a
/i
iiafter
Jul
/nav:
<l— cd-pagination-wrapper ——>
/section
v<section
br:
br.
v <div class=""data" style="text-align
center
h1l-Page 1 Data</hl
/diwv

html body section nav ul i a

Styles | Computed Event Listeners »

Page 1 Data

Filter thov .cls +‘

Inspecting the Next button

[161]

Scraping Challenges and Solutions Chapter 6

There are two parts of the page that are of interest. The first is the link for the Next button.
It's a fairly common practice that this link has a class that identifies the link as being for the
next page. We can use that info to find this link. In this case, we can find it using the
following XPath:

//*/a[@class="next']

The second item of interest is actually retrieving the data we want from the page. On these
pages, this is identified by a <div> tag with a class="data" attribute. These pages only
have one data item, but in this example of crawling the pages resulting in a search, we will
pull multiple items.

Now let's go and actually run a scraper for these pages.

How to do it

There is a script named 06/08_scrapy_pagination.py. Run this script with Python and
there will be a lot of output from Scrapy, most of which will be the standard Scrapy
debugging output. However, within that output you will see that we extracted the data
items on all five pages:

Page 1 Data
Page 2 Data
Page 3 Data
Page 4 Data
Page 5 Data

How it works

The code begins with the definition of CrawlSpider and the start URL:

class PaginatedSearchResultsSpider (CrawlSpider) :
name = "paginationscraper"
start_urls = [
"http://localhost:5001/pagination/pagel.html"
]

[162]

Scraping Challenges and Solutions Chapter 6

Then the rules field is defined, which informs Scrapy how to parse each page to look for
links. This code uses the XPath discussed earlier to find the Next link in the page. Scrapy
will use this rule on every page to find the next page to process, and will queue that request
for processing after the current page. For each page that is found, the callback parameter
informs Scrapy which method to call for processing, in this case parse_result_page:

rules = (
Extract links for next pages

Rule (LinkExtractor (allow=(),
restrict_xpaths=("//*/al[@class='next']")),
callback='parse_result_page', follow=True),

)

A single list variable named all_items is declared to hold all the items we find:

all_items = []

Then the parse_start_url method is defined. Scrapy will call this to parse the initial URL
in the crawl. The function simply defers that processing to parse_result_page:

def parse_start_url(self, response):
return self.parse_result_page (response)

The parse_result_page method then uses XPath to find the text inside of the <h1> tag
within the <div class="data"> tag. It then appends that text to the al1_items list:

def parse_result_page(self, response):

data_items = response.xpath("//*/div[Q@class="data']/hl/text ()")
for data_item in data_items:

self.all_items.append(data_item.root)

Upon the crawl being completed, the closed () method is called and writes out the content
of the all_items field:

def closed(self, reason):
for i in self.all_items:
print (i)

The crawler is run using Python as a script using the following:

if _ name_ == "_ main_ ":
process = CrawlerProcess ({
'LOG_LEVEL': 'DEBUG',
'CLOSESPIDER_PAGECOUNT': 10
})
process.crawl (ImdbSearchResultsSpider)
process.start ()

[163]

Scraping Challenges and Solutions Chapter 6

Note the use of the CLOSESPIDER_PAGECOUNT property being set to 10. This exceeds the
number of pages on this site, but in many (or most) cases there will likely be thousands of
pages in a search result. It's a good practice to stop after an appropriate number of pages.
This is good behavior a crawler, as the relevance of items to your search drops dramatically
after a few pages, so crawling beyond the first few pages has greatly diminishing returns
and it's generally best to stop after a few pages.

There's more...

As mentioned at the start of the recipe, this is easy to modify for various automatic searches
on various content sites. This practice can push the limits of acceptable use, so it has been
generalized here. But for more actual examples, visit my blog at: www . smac. io.

Handling forms and forms-based
authorization

We are often required to log into a site before we can crawl its content. This is usually done
through a form where we enter a user name and password, press Enter, and then granted
access to previously hidden content. This type of form authentication is often called cookie
authorization, as when we authorize, the server creates a cookie that it can use to verify that
you have signed in. Scrapy respects these cookies, so all we need to do is somehow
automate the form during our crawl.

Getting ready

We will crawl a page in the containers web site at the following URL:
http://localhost:5001/home/secured. On this page, and links from that page, there
is content we would like to scrape. However, this page is blocked by a login. When opening
the page in a browser, we are presented with the following login form, where we can enter
darkhelmet as the user name and vespa as the password:

[164]

Scraping Challenges and Solutions Chapter 6

| Login - Crawl Me

& C {} | @ localhost:5001/accountflogin?ReturnUrl=%2Fhome%2Fsecured

Crawl me

Login
Username darkhelmet

Password +-++-

Login |

Username and password credentials are entered

Upon pressing Enter we are authenticated and taken to our originally desired page.

There's not a great deal of content there, but the message is enough to verify that we have
logged in, and our scraper knows that too.

How to do it

We proceed with the recipe as follows:

1. If you examine the HTML for the sign-in page, you will have noticed the
following form code:

<form action="/Account/Login" method="post"><div>

<label for="Username">Username</label>

<input type="text" id="Username" name="Username" value="" />
<span class="field-validation-valid" data-valmsg-for="Username"
data-valmsg-replace="true"></div>

<div>

<label for="Password">Password</label>

<input type="password" id="Password" name="Password" />

<span class="field-validation-valid" data-valmsg-for="Password"
data-valmsg-replace="true">

</div>

[165]

Scraping Challenges and Solutions Chapter 6

<input type="hidden" name="returnUrl" />

<input name="submit" type="submit" value="Login"/>

<input name="__RequestVerificationToken" type="hidden"
value="CfDJ8CqzjGWzUMJIKkKCmxuBIgZf3UkeXZnVKBWRV_Wud4qUkprH8b_2jno5-1
SGSNjFqlFgLie84xI272BkhHDzwgUXpz 6bbBWEROV_—
fP5iTITiZi2VEyXzLD_beXUp5cgjCS5AtkIayWThISI36InzBgi2A" /></form>

2. To get the form processors in Scrapy to work, we will need the IDs of the
username and password fields in this form. They are Username and Password
respectively. Now we can create a spider using this information. This spider is in
the script file, 06/09_forms_auth.py. The spider definition starts with the
following;:

class Spider (scrapy.Spider) :
name = 'spider'
start_urls ['http://localhost:5001/home/secured']
login_user 'darkhelmet'
login_pass = 'vespa'

3. We define two fields in the class, 1login_user and login_pass, to hold the
username we want to use. The crawl will also start at the specified URL.

4. The parse method is then changed to examine if the page contains a login form.
This is done by using XPath to see if there is an input form of type password and
with an id of Password:

def parse(self, response):
print ("Parsing: ", response)

count_of_password_fields =
int (float (response.xpath ("count (//*/input [@type='password' and
@id='Password'])") .extract () [0]))
if count_of_password_fields > 0:
print ("Got a password page")

5. If that field is found, we then return a FormRequest to Scrapy, generated using
its from_response method:

return scrapy.FormRequest.from_response (

response,

formdata={'Username': self.login_user, 'Password':
self.login_pass},

callback=self.after_login)

[166]

Scraping Challenges and Solutions Chapter 6

6. This function is passed the response, and then a dictionary specifying the IDs of
fields that need data inserted along with those values. A callback is then defined
to be executed after this FormRequest is executed by Scrapy, and to which is
passed the content of the resulting form:

def after_login(self, response):
if "This page is secured" in str (response.body) :
print ("You have logged in ok!")

7. This callback simply looks for the words This page is secured, which are
only returned if the login is successful. When running this successfully, we will
see the following output from our scraper's print statements:

Parsing: <200
http://localhost:5001/account/login?ReturnUrl=%2Fhome%2Fsecured>
Got a password page

You have logged in ok!

How it works

When you create a FormRequest, your are instructing Scrapy to construct a form POST
request on behalf of your process, using the data in the specified dictionary as the form
parameters in the POST request. It constructs this request and sends it to the server. Upon
receipt of the answer in that POST, it calls the specified callback function.

There's more...

This technique is also useful in form entries of many other kinds, not just login forms. This
can be used to automate, then execute, any type of HTML form request, such as making
orders, or those used for executing search operations.

[167]

Scraping Challenges and Solutions Chapter 6

Handling basic authorization

Some websites use a form of authorization known as basic authorization. This was popular
before other means of authorization, such as cookie auth or OAuth. It is also common on
corporate intranets and some web APIs. In basic authorization, a header is added to the
HTTP request. This header, Authorization, is passed the Basic string and then a base64
encoding of the values <username>:<password>. So in the case of darkhelmet, this
header would look as follows:

Authorization: Basic ZGFya2hlbGl1ldDp2ZXNwYQ==, with
ZGFya2hlbG1l1dDp2ZXNwYQ== being darkhelmet:vespa base 64 encoded.

Note that this is no more secure than sending it in plain-text, (although when performed
over HTTPS it is secure.) However, for the most part, is has been subsumed for more robust
authorization forms, and even cookie authorization allows for more complex features such
as claims:

How to do it

Supporting basic auth in Scrapy is straightforward. To get this to work for a spider and a
given site the spider is crawling, simply define the http_user, http_pass, and name fields
in your scraper. The following demonstrates:

class SomelIntranetSiteSpider (CrawlSpider) :

http_user = 'someuser'

http_pass = 'somepass'

name = 'intranet.example.com'

.. rest of the spider code omitted ...

How it works

When the spider crawls any pages on the given site specified by the name, it will use the
values of http_user and http_pass to construct the appropriate header.

There's more...

Note, this task is performed by the Ht t pAuthMiddleware module of Scrapy. More info on
basic authorization is also available
at: https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication.

[168]

https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication

Scraping Challenges and Solutions Chapter 6

Preventing bans by scraping via proxies

Sometimes you may get blocked by a site that your are scraping because you are identified
as a scraper, and sometimes this happens because the webmaster sees the scrape requests
coming from a uniform IP, at which point they simply block access to that IP.

To help prevent this problem, it is possible to use proxy randomization middleware within
Scrapy. There exists a library, scrapy-proxies, which implements a proxy randomization

feature.

Getting ready

You can get scrapy-proxies from GitHub at https://github.com/aivarsk/scrapy-
proxies or by installing it using pip install scrapy_proxies

How to do it

Use of scrapy-proxies is done by configuration. It starts by
configuring DOWNLOADER_MIDDLEWARES, and making sure they have RetryMiddleware,
RandomProxy, and HttpProxyMiddleware installed. The following would be a typical

configuration:

Retry many times since proxies often fail

RETRY_TIMES = 10
Retry on most error codes since proxies fail for different reasons

RETRY_HTTP_CODES = [500, 503, 504, 400, 403, 404, 408]

DOWNLOADER_MIDDLEWARES = {
'scrapy.downloadermiddlewares.retry.RetryMiddleware': 90,
'scrapy_proxies.RandomProxy': 100,
'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 110,

}
The the PROXY_LIST setting is configured to point to a file containing a list of proxies:

PROXY_LIST = '/path/to/proxy/list.txt'

[169]

https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies
https://github.com/aivarsk/scrapy-proxies

Scraping Challenges and Solutions Chapter 6

Then, we need to let Scrapy know the PROXY_MODE:

Proxy mode

0 = Every requests have different proxy

1 = Take only one proxy from the list and assign it to every requests
2 = Put a custom proxy to use in the settings

#
#
#
#
PROXY_MODE = 0

If PROXY_MODE is 2, then you must specify a CUSTOM_PROXY:

CUSTOM_PROXY = "http://hostl:port"

How it works

This configuration essentially tells Scrapy that if a request for a page fails with any of the
RETRY_HTTP_CODES, and for up to RETRY_TIMES per URL, then use a proxy from within
the file specified by PROXY_LIST, and by using the pattern defined by PROXY_MODE. With
this, you can have Scrapy fail back to any number of proxy servers to retry the request from
a different IP address and/or port.

Randomizing user agents

Which user agent you use can have an effect on the success of your scraper. Some websites
will flat out refuse to serve content to specific user agents. This can be because the user
agent is identified as a scraper that is banned, or the user agent is for an unsupported
browser (namely Internet Explorer 6).

Another reason for control over the scraper is that content may be rendered differently by
the web server depending on the specified user agent. This is currently common for mobile
sites, but it can also be used for desktops, to do things such as delivering simpler content for
older browsers.

Therefore, it can be useful to set the user agent to other values than the defaults. Scrapy
defaults to a user agent named scrapybot. This can be configured by using the BOT_NAME
parameter. If you use Scrapy projects, Scrapy will set the agent to the name of your project.

For more complicated schemes, there are two popular extensions that can be used: scrapy-
fake-agent and scrapy-random-useragent.

[170]

Scraping Challenges and Solutions Chapter 6

How to do it

We proceed with the recipe as follows:

1. scrapy-fake-useragent is available on GitHub at https://github.com/
alecxe/scrapy-fake-useragent, and scrapy-random-useragent is available
at https://github.com/cnu/scrapy-random-useragent. You can include them
using pip install scrapy-fake—agent and/or pip install scrapy-
random-useragent.

2. scrapy-random-useragent will select a random user agent for each of your
requests from a file. It is configured in two settings:

DOWNLOADER_MIDDLEWARES = {
'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware'
None,
'random_useragent .RandomUserAgentMiddleware': 400

}

3. This disables the existing UserAgentMiddleware, and replaces it with the
implementation provided in RandomUserAgentMiddleware. Then, you
configure a reference to a file containing a list of user agent names:

USER_AGENT_LIST = "/path/to/useragents.txt"

4. Once configured, each request will use a random user agent from the file.
5. scrapy-fake-useragent uses a different model. It retrieves user agents from

an online database tracking the most common user agents in use. Configuring
Scrapy for its use is done with the following settings:

DOWNLOADER_MIDDLEWARES = {
'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware':

None,
'scrapy_fake_useragent.middleware.RandomUserAgentMiddleware':

400,

}

6. It also has the ability to set the type of user agent used, to values such as mobile
or desktop, to force selection of user agents in those two categories. This is
performed using the RANDOM_UA_TYPE setting, which defaults to random.

[171]

https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/alecxe/scrapy-fake-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent
https://github.com/cnu/scrapy-random-useragent

Scraping Challenges and Solutions Chapter 6

7. If using scrapy-fake-useragent with any proxy middleware, then you may
want to randomize per proxy. This can be done by setting
RANDOM_UA_PER_PROXY to True. Also, you will want to set the priority of
RandomUserAgentMiddleware to be greater than scrapy-proxies, so that the
proxy is set before being handled.

Caching responses

Scrapy comes with the ability to cache HTTP requests. This can greatly reduce crawling
times if pages have already been visited. By enabling the cache, Scrapy will store every
request and response.

How to do it

There is a working example in the 06/10_file_cache.py script. In Scrapy, caching
middleware is disabled by default. To enable this cache,

set HTTPCACHE_ENABLED to True and HTTPCACHE_DIR to a directory on the file system
(using a relative path will create the directory in the project's data folder). To demonstrate,
this script runs a crawl of the NASA site, and caches the content. It is configured using the
following;:

if name == "_ _main__ ":

process = CrawlerProcess ({
'"LOG_LEVEL': 'CRITICAL',
'CLOSESPIDER_PAGECOUNT': 50,
'"HTTPCACHE_ENABLED': True,
'"HTTPCACHE_DIR': "."

)

process.crawl (Spider)

process.start ()

We ask Scrapy to cache using files and to create a sub-directory in the current folder. We
also instruct it to limit the crawl to roughly 500 pages. When running this, the crawl will
take roughly a minute (depending on your internet speed), and there will be roughly 500
lines of output.

[172]

Scraping Challenges and Solutions Chapter 6

After the first execution, you can see that there is now a . scrapy folder in your directory
that contains the cache data. The structure will look like the following:

.scrapy

spider
v Qo0
v 001bd4136bdd35eb9b9310127f88e8bd62742bf8

S5faffcazeab3
8d875dec d4d81f30c6a3s
JebeDl4d 9daf5f8127f76

00B65aase75

Running the script again will only take a few seconds, and will produce the same
output/reporting of pages parsed, except that this time the content will come from the cache
instead of HTTP requests.

There's more...

There are many configurations and options for caching in Scrapy. By default, the cache
expiration, specified by HTTPCACHE_EXPIRATION_SECS, is set to 0. 0 means the cache items
never expire, so once written, Scrapy will never request that item via HTTP again.
Realistically, you will want to set this to some value that does expire.

File storage for the cache is only one of the options for caching. Items can also be cached in
DMB and LevelDB by setting the HTTPCACHE_STORAGE setting

to scrapy.extensions.httpcache.DbmCacheStorage or
scrapy.extensions.httpcache.LeveldbCacheStorage, respectively. You could also
write your own code, to store page content in another type of database or cloud storage if
you feel so inclined.

[173]

Scraping Challenges and Solutions Chapter 6

Finally, we come to cache policy. Scrapy comes with two policies built in: Dummy (the
default), and RFC2616. This can be set by changing the HTTPCACHE_POLICY setting

to scrapy.extensions.httpcache.DummyPolicy Or
scrapy.extensions.httpcache.RFC2616Policy.

The RFC2616 policy enables HTTP cache-control awareness with operations including the
following;:

¢ Do not attempt to store responses/requests with no-store cache-control directive
set

¢ Do not serve responses from cache if no-cache cache-control directive is set even
for fresh responses

e Compute freshness lifetime from max-age cache-control directive
e Compute freshness lifetime from Expires response header

e Compute freshness lifetime from Last-Modified response header (heuristic used
by Firefox)

e Compute current age from Age response header

e Compute current age from Date header

¢ Revalidate stale responses based on Last-Modified response header
¢ Revalidate stale responses based on ETag response header

e Set Date header for any received response missing it

¢ Support max-stale cache-control directive in requests

[174]

Text Wrangling and Analysis

In this chapter, we will cover:

e Installing NLTK

¢ Performing sentence splitting

e Performing tokenization

¢ Performing stemming

¢ Performing lemmatization

e Identifying and removing stop words

e Calculating the frequency distribution of words
¢ Identifying and removing rare words

e Identifying and removing short words

¢ Removing punctuation marks

e Piecing together n-grams

¢ Scraping a job listing from StackOverflow

¢ Reading and cleaning the description in the job listCreating a word cloud from a
StackOverflow job listing

Text Wrangling and Analysis Chapter 7

Introduction

Mining the data is often the most interesting part of the job, and text is one of the most
common data sources. We will be using the NLTK toolkit to introduce common natural
language processing concepts and statistical models. Not only do we want to find
quantitative data, such as numbers within data that we have scraped, we also want to be
able to analyze various characteristics of textual information. This analysis of textual
information is often lumped into a category known as natural language processing (NLP).
There exists a library for Python, NLTK, that provides rich capabilities. We will investigate
several of it's capabilities.

Installing NLTK

In this recipe we learn to install NTLK, the natural language toolkit for Python.

How to do it

We proceed with the recipe as follows:
1. The core of NLTK can be installed using pip:
pip install nltk

2. Some processes, such as those we will use, require an additional download of
various data sets that they use to perform various analyses. They can be
downloaded by executing the following;:

import nltk

nltk.download ()

showing info
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml

[176]

Text Wrangling and Analysis Chapter 7

3. On a Mac, this actually pops up the following window:

Identifier Name Size Status
all All packages nfa not installed
all-corpora All the corpora nfa not installed
all-nlk All packages available on nltk_data gh-pages branch nfa not installed
book Everything used in the MLTK Book nfa not installed
popular Popular packages nfa not installed
third -party Third-party data packages nfa not installed
Download Refresh

Server Index: |httpa://raw.githubusercontent.com/nltk/nltk_data/gh-pages/indexz.zml

Download Directory: |/Users/michaelheydt/nltk_data

The NTLK GUI

Select install all and press the Download button. The tools will begin to download a
number of data sets. This can take a while, so grab a coffee or beer and check back every
now and then. When completed, you are ready to progress to the next recipe.

Performing sentence splitting

Many NLP processes require splitting a large amount of text into sentences. This may seem
to be a simple task, but for computers it can be problematic. A simple sentence splitter can
look just for periods (.), or use other algorithms such as predictive classifiers. We will
examine two means of sentence splitting with NLTK.

[177]

Text Wrangling and Analysis Chapter 7

How to do it

We will use a sentence stored in thee 07/sentencel.txt file. It has the following content,
which was pulled from a random job listing on StackOverflow:

We are seeking developers with demonstrable experience in: ASP.NET, C#, SQL Server,
and Angular]S. We are a fast-paced, highly iterative team that has to adapt quickly as our
factory grows. We need people who are comfortable tackling new problems, innovating
solutions, and interacting with every facet of the company on a daily basis. Creative,
motivated, able to take responsibility and support the applications you create. Help us get
rockets out the door faster!

The first example of sentence splitting is in the 07/01_sentence_splittingl.py file.
This uses the built-in sentence splitter in NLTK, which uses an internal boundary detection
algorithm:

1. First we import the sentence tokenizer from NLTK:
from nltk.tokenize import sent_tokenize
2. Then load the file:

with open('sentencel.txt', 'r') as myfile:
data=myfile.read() .replace('\n', ''")

3. Then the sentence is split using sent_tokenize, and the sentences are reported:
sentences = sent_tokenize (data)

for s in sentences:
print (s)

This results in the following output:

We are seeking developers with demonstrable experience in: ASP.NET, C#, SQL
Server, and AngulardJs.

We are a fast-paced, highly iterative team that has to adapt quickly as our
factory grows.

We need people who are comfortable tackling new problems, innovating
solutions, and interacting with every facet of the company on a daily
basis.

Creative, motivated, able to take responsibility and support the
applications you create.

Help us get rockets out the door faster!

[178]

Text Wrangling and Analysis Chapter 7

4. If you want to create your own tokenizer and train it yourself, then you can use
the PunktSentenceTokenizer class. sent_tokenize is actually a derived
class of this class that implements sentence splitting in English by default. But
there are 17 different language models you can pick from:

Michaels-iMac—-2:~ michaelheydt$ 1ls ~/nltk_data/tokenizers/punkt
PY3 finnish.pickle portuguese.pickle

README french.pickle slovene.pickle
czech.pickle german.pickle spanish.pickle
danish.pickle greek.pickle swedish.pickle
dutch.pickle italian.pickle turkish.pickle

english.pickle norwegian.pickle
estonian.pickle polish.pickle

5. You can select the desired language by using the language parameter. As an
example, the following would split based on using German:

sentences = sent_tokenize (data, language="german")

There's more...

To learn more about this algorithm, you can read the source paper available at http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017rep=repltype=pdf.

Performing tokenization

Tokenization is the process of converting text into tokens. These tokens can be paragraphs,
sentences, and common individual words, and are commonly based at the word level.
NLTK comes with a number of tokenizers that will be demonstrated in this recipe.

[179]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5017&rep=rep1&type=pdf

Text Wrangling and Analysis Chapter 7

How to do it

The code for this example is in the 07/02_tokenize.py file. This extends the sentence
splitter to demonstrate five different tokenization techniques. The first sentence in the file
will be the only one tokenized so that we keep the amount of output to a reasonable
amount:

1. The first step is to simply use the built-in Python string . split () method. This
results in the following;:

print (first_sentence.split())
['We', 'are', 'seeking', 'developers', 'with', 'demonstrable',
', '"ASP.NET,', 'C#,', 'SQL', 'Server,', 'and',

'experience', 'in:

'AngulardS. ']

The sentence is split on space boundaries. Note that punctuation such as ":" and "," are
included in the resulting tokens.

2. The following demonstrates using the tokenizers built into NLTK. First, we need
to import them:

from nltk.tokenize import word_tokenize, regexp_tokenize,
wordpunct_tokenize, blankline_tokenize

The following demonstrates using the word_tokenizer:

print (word_tokenize (first_sentence))

['We', 'are', 'seeking', 'developers', 'with', 'demonstrable',
'experience', 'in', ':', 'ASP.NET', ',', 'C', '#', ',', 'sSQL',
'Server', ',', 'and', 'AngulardsS', '.']

The result now has also split the punctuation into their own tokens.

The following uses the regex tokenizer, which allows you to apply any regex expression as
a tokenizer. Itusesa '\w+' regex and has the following result:

print (regexp_tokenize (first_sentence, pattern='\w+'))
['We', 'are', 'seeking', 'developers', 'with', 'demonstrable',
'experience', 'in', 'ASP', 'NET', 'C', 'SQL', 'Server', 'and', 'AngularJS']

The wordpunct_tokenizer has the following results:

print (wordpunct_tokenize (first_sentence))

['We', 'are', 'seeking', 'developers', 'with', 'demonstrable',
'experience', 'in', ':', 'ASP', '.', 'NET', ',', 'C', '#,', 'SQL',
'Server', ',', 'and', 'Angulards', '.']

[180]

Text Wrangling and Analysis Chapter 7

And blankline_tokenize produces the following:

print (blankline_tokenize (first_sentence))
['We are seeking developers with demonstrable experience in: ASP.NET, C#,
SQL Server, and AngularJdS.']

As can be seen, this is not quite a simple problem as might be thought. Depending upon
the type of text being tokenized, you can come out with quite different results.

Performing stemming

Stemming is the process of cutting down a token to its stem. Technically, it is the process or
reducing inflected (and sometimes derived) words to their word stem - the base root form
of the word. As an example, the words fishing, fished, and fisher stem from the root word
fish. This helps to reduce the set of words being processed into a smaller base set that is
more easily processed.

The most common algorithm for stemming was created by Martin Porter, and NLTK
provides an implementation of this algorithm in the PorterStemmer. NLTK also provides
an implementation of a Snowball stemmer, which was also created by Porter, and designed
to handle languages other than English. There is one more implementation provided by
NLTK referred to as a Lancaster stemmer. The Lancaster stemmer is considered the most
aggressive stemmer of the three.

How to do it

NLTK provides an implementation of the Porter stemming algorithm in its PorterStemmer
class. An instance of this can easily be created by the following code:

>>> from nltk.stem import PorterStemmer

>>> pst = PorterStemmer ()
>>> pst.stem('fishing')
'fish'

[181]

Text Wrangling and Analysis Chapter 7

The script in the 07/03_stemming. py file applies the Porter and Lancaster stemmers to the
first sentence of our input file. The primary section of the code performing the stemming is
the following:

pst = PorterStemmer ()
lst = LancasterStemmer ()

print ("Stemming results:")

for token in regexp_tokenize (sentences[0], pattern='\w+'):
print (token, pst.stem(token), lst.stem(token))

And this results in the following output:

Stemming results:

We We we

are are ar

seeking seek seek
developers develop develop
with with with

demonstrable demonstr demonst
experience experi expery

in in in

ASP asp asp

NET net net

cCc

SQL sgl sgl

Server server serv

and and and

AngularJS angularj angulars

Looking at the results, it can be seen that the Lancaster stemmer is indeed more aggressive
than the Porter stemmer, as several of the words have been cut down further with the latter
stemmer.

Performing lemmatization

Lemmatization is a more methodical process of converting words to their base. Where
stemming generally just chops off the ends of words, lemmatization takes into account the
morphological analysis of words, evaluating the context and part of speech to determine the
inflected form, and makes a decision between different rules to determine the root.

[182]

Text Wrangling and Analysis Chapter 7

How to do it

Lemmatization can be utilized in NTLK using the WordNetLemmat izer. This class uses the
WordNet service, an online semantic database to make its decisions. The code in the
07/04_lemmatization.py file extends the previous stemming example to also calculate
the lemmatization of each word. The code of importance is the following:

from nltk.stem import PorterStemmer
from nltk.stem.lancaster import LancasterStemmer
from nltk.stem import WordNetLemmatizer

pst = PorterStemmer ()
lst = LancasterStemmer ()
wnl = WordNetLemmatizer ()

print ("Stemming / lemmatization results")
for token in regexp_tokenize (sentences[0], pattern='\w+'):
print (token, pst.stem(token), lst.stem(token), wnl.lemmatize (token))

And it results in the following output:

Stemming / lemmatization results

We We we We

are are ar are

seeking seek seek seeking

developers develop develop developer
with with with with

demonstrable demonstr demonst demonstrable
experience experi expery experience
in in in in

ASP asp asp ASP

NET net net NET

cCCccC

SQL sgl sgl SQL

Server server serv Server

and and and and

AngularJS angularj angulars AngularJsS

There is a small amount of variance in the results using the lemmatization process. The
point of this is that, depending upon your data, one of these may be more suitable for your
needs than the other, so give all of them a try if needed.

[183]

Text Wrangling and Analysis Chapter 7

Determining and removing stop words

Stop words are common words that, in a natural language processing situation, do not
provide much contextual meaning. These words are often the most common words in a
language. These tend to, at least in English, be articles and pronouns, such as I, me, the, is,
which, who, at, among others. Processing of meaning in documents can often be facilitated
by removal of these words before processing, and hence many tools support this ability.
NLTK is one of these, and comes with support for stop word removal for roughly 22
languages.

How to do it

Proceed with the recipe as follows (code is available in 07/06_freq_dist.py):

1. The following demonstrates stop word removal using NLTK. First, start with
importing stop words:

>>> from nltk.corpus import stopwords

2. Then select the stop words for your desired language. The following selects
English:

>>> stoplist = stopwords.words('english')
3. The English stop list has 153 words:

>>> len(stoplist)
153

4. That's not too many that we can't show them all here:

>>> stoplist

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves',
'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him',
'his', 'himself', 'she', 'her', 'hers', 'herself', 'it',6 'its',
'itself', 'they', 'them', 'their', 'theirs', 'themselves',6 'what',
'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am',
'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has',
'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the',
'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of',
'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into',
'through', 'during', 'before', 'after', 'above', 'below', 'to',
'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under',
'again', 'further', 'then', 'once', 'here', 'there', 'when',

[184]

Text Wrangling and Analysis Chapter 7

'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',
'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own',
'same', 'so', 'than', 'too', 'wvery', 's', 't', 'can', 'will"',
'just', 'don', 'should', 'now', '4', '11', 'm', 'o', 're', 've',
'y', 'ain', 'aren', 'couldn', 'didn', 'doesn', 'hadn', 'hasn',
'haven', 'isn', 'ma', 'mightn', 'mustn', 'needn', 'shan',
'shouldn', 'wasn', 'weren', 'won', 'wouldn']

5. The removal of stop words from a list of words can be performed easily with a
simple python statement. This is demonstrated in the 07/05_stopwords.py
file. The script starts with the required imports and readies the sentence we want
to process:

from nltk.tokenize import sent_tokenize
from nltk.tokenize import regexp_tokenize

from nltk.corpus import stopwords

with open('sentencel.txt', 'r') as myfile:
data = myfile.read() .replace('\n', '')

sentences = sent_tokenize (data)
first_sentence = sentences[0]

print ("Original sentence:")
print (first_sentence)

6. This yields the following output, which we are familiar with:
Original sentence:
We are seeking developers with demonstrable experience in: ASP.NET,
C#, SQL Server, and AngularJS.

7. Next we tokenize that sentence:

tokenized = regexp_tokenize (first_sentence, '\w+')
print ("Tokenized:", tokenized)

[185]

Text Wrangling and Analysis Chapter 7

8. With the following output:

Tokenized: ['We', 'are', 'seeking', 'developers', 'with',
'demonstrable', 'experience', 'in', 'ASP', 'NET', 'C', 'SQL',
'Server', 'and', 'AngularJS']

9. Then we can remove tokens that are in the stop list with the following statements:

stoplist = stopwords.words ('english')
cleaned = [word for word in tokenized if word not in stoplist]
print ("Cleaned:", cleaned)

Using the following output:

Cleaned: ['We', 'seeking', 'developers', 'demonstrable',K 'experience',
'ASP', 'NET', 'C', 'SQL', 'Server', 'AngularJS']

There's more...

Stop word removal has its purposes. It is helpful, as we will see in a later recipe where we
create a word cloud (stop words don't give much information in a word cloud), but can also
be detrimental. Many other NLP processes that deduce meaning based upon sentence
structure can be greatly hampered by their removal.

Calculating the frequency distributions of
words

A frequency distribution counts the number of occurrences of distinct data values. These
are of value as we can use them to determine which words or phrases within a document
are most common, and from that infer those that have greater or lesser value.

Frequency distributions can be calculated using several different techniques. We will
examine them using the facilities built into NLTK.

[186]

Text Wrangling and Analysis Chapter 7

How to do it

NLTK provides a class, nt 1k .probabilities.FreqDist, that allow us to very easily
calculate the frequency distribution of values in a list. Let's examine using this class (code is
in 07/freq_dist.py):

1. To create a frequency distribution using NLTK, start by importing the feature

from NTLK (and also tokenizers and stop words):

from nltk.probabilities import FregDist
from nltk.tokenize import regexp_tokenize
from nltk.corpus import stopwords

2. Then we can use the FreqDist function to create a frequency distribution given a

list of words. We will examine this by reading in the contents of wotw.txt (The
War of the Worlds - courtesy of Gutenberg), tokenizing, and removing stop
words:

with open('wotw.txt', 'r') as file:
data = file.read()
tokens = [word.lower () for word in regexp_tokenize (data, '\w+')]
stoplist = stopwords.words ('english')
without_stops = [word for word in tokens if word not in stoplist]

. We can then calculate the frequency distribution of the remaining words:
freq_dist = FregDist (without_stops)

. freq_dist is a dictionary of words to the counts of those words. The following
prints all of them (only a few lines of output shown as there are thousands of
unique words):

print ('Number of words: %$s' % len(freqg_dist))

for key in freqg_dist.keys():
print (key, freq_distlkey])

Number of words: 6613

shall 8

dwell 1

worlds 2

inhabited 1

lords 1

world 26

things 64

[187]

Text Wrangling and Analysis Chapter 7

5. We can use the frequency distribution to identify the most common words. The
following reports the 10 most common words:

print (freq_dist.most_common (10))

[('one', 201), ('upon', 172), ('said', 166), ('martians', 164),
('people', 159), ('came', 151), ('towards', 129), ('saw',6 129),
('man', 126), ('time', 122)]

I was hoping that martians was in the top 5. It's number 4.

There's more...

We can also use this to identify the least common words, by slicing the result of
.most_common () with a negative value. As an example, the following finds the 10 least

common words:

print (freq_dist.most_common () [-10:7)

[("bitten', 1), ('gibber', 1), ('fiercer', 1), ('paler', 1), ('uglier', 1),
('distortions', 1), ('haunting', 1), ('mockery', 1), ('beds', 1), ('seers',
1)]

There are quite a few words with only one occurrence, so this only gets a subset of those
values. The number of words with only one occurrence can be determined by the following
(truncated due to there being 3,224 words):

dist_1 = [item[0] for item in freqg_ dist.items () if item[1l] == 1]
print (len(dist_1), dist_1)

3224 ['dwell', 'inhabited', 'lords', 'kepler', 'quoted', 'eve', 'mortal',
'scrutinised', 'studied', 'scrutinise', 'multiply', 'complacency', 'globe',
'infusoria',

Identifying and removing rare words

We can remove words with low occurences by leveraging the ability to find words with low
frequency counts, that fall outside of a certain deviation of the norm, or just from a list of
words considered to be rare within the given domain. But the technique we will use works
the same for either.

[188]

Text Wrangling and Analysis Chapter 7

How to do it

Rare words can be removed by building a list of those rare words and then removing them
from the set of tokens being processed. The list of rare words can be determined by using
the frequency distribution provided by NTLK. Then you decide what threshold should be
used as a rare word threshold:

1. The scriptin the 07/07_rare_words.py file extends that of the frequency
distribution recipe to identify words with two or fewer occurrences and then
removes those words from the tokens:

with open('wotw.txt', 'r') as file:
data = file.read()

tokens = [word.lower () for word in regexp_tokenize (data, '"\w+')]
stoplist = stopwords.words ('english')
without_stops = [word for word in tokens if word not in stoplist]

freq _dist = FregDist (without_stops)

print ('Number of words: %s' % len(freqg_dist))

all words with one occurrence

dist = [item[0] for item in freqg_dist.items () if item[1l] <= 2]
print (len(dist))
not_rare = [word for word in without_stops if word not in dist]

freq dist2 = FregDist (not_rare)
print (len(freq_dist2))

The output results in:

Number of words: 6613
4361
2252

Through these two steps, removing stop words and then words with 2 or fewer
occurrences, we have moved the total number of words from 6,613 to 2,252, which is
roughly one third.

[189]

Text Wrangling and Analysis Chapter 7

Identifying and removing rare words

Removal of short words can also be useful in removing noise words from the content. The
following examines removing words of a certain length or shorter. It also demonstrates the
opposite by selecting the words not considered short (having a length of more than the
specified short word length).

How to do it

We can leverage the frequency distribution from NLTK to efficiently calculate the short
words. We could just scan all of the words in the source, but it is simply more efficient to
scan the lengths of all of the keys in the resulting distribution as it will be a significantly
smaller set of data:

1. The script in the 07/08_short_words.py file exemplifies this process. It starts
by loading the content of wotw. txt and then calculating the word frequency
distribution (after short word removal). Then it identifies the words of thee
characters or less:

short_word_len = 3
short_words = [word for word in freqg_dist.keys() if len(word) <=

short_word_len]
print ('Distinct # of words of len <= %$s: %s' % (short_word_len,

len (short_words)))

This results in:

Distinct # of words of len <= 3: 184

2. The words not considered short can be found by changing the logic operator in
the list comprehension:

unshort_words = [word for word in freq_dist.keys() if len(word) >

short_word_len]
print ('Distinct # of word > len %s: %s' % (short_word_len,
len (unshort_words)))

And results in:

Distinct # of word > len 3: 6429

[190]

Text Wrangling and Analysis Chapter 7

Removing punctuation marks

Depending upon the tokenizer used, and the input to those tokenizers, it may be desired to
remove punctuation from the resulting list of tokens. The regexp_tokenize function with
"\w+' as the expression removes punctuation well, but word_tokenize does not do it very
well and will return many punctuation marks as their own tokens.

How to do it

Removing punctuation marks from our tokens is done similarly to the removal of other
words within our tokens by using a list comprehension and only selecting those items that
are not punctuation marks. The script 07/09_remove_punctuation.py file demonstrates
this. Let's walk through the process:

1. We'll start with the following, which will word_tokenize a string from a job
listing:

>>> content = "Strong programming experience in C#, ASP.NET/MVC,
JavaScript/jQuery and SQL Server"

>>> tokenized = word_tokenize (content)

>>> stop_list = stopwords.words ('english')

>>> cleaned = [word for word in tokenized if word not in stop_list]
>>> print (cleaned)

['Strong', 'programming', 'experience', 'C', '#', ',',
'ASP.NET/MVC', ',', 'JavaScript/jQuery', 'SQL', 'Server']

2. Now we can remove the punctuation with the following;:

>>> punctuation_marks = [I:I’ l,l, I.I’ ll“ll’ llllll’ l(l, I)I’ l_l,
T I#I]

- 4

>>> tokens_cleaned = [word for word in cleaned if word not in

punctuation_marks]

>>> print (tokens_cleaned)

['Strong', 'programming', 'experience', 'C', 'ASP.NET/MVC',
'JavaScript/jQuery', 'SQL', 'Server']

[191]

Text Wrangling and Analysis Chapter 7

3. This process can be encapsulated in a function. The following is in the
07/punctuation.py file, and will remove punctuation:

def remove_punctuation (tokens) :

punctuation: [l:l, l,l, '.l, "“", "ll", l(l, ')l, _, ! ,
I#IJ

return [token for token in tokens if token not in punctuation]

There's more...

Removal of punctuation and symbols can be a difficult problem. While they don't add
value to many searches, punctuation can also be required to be kept as part of a token. Take
the case of searching a job site and trying to find C# programming positions, such as in the
example in this recipe. The tokenization of C# gets split into two tokens:

>>> word_tokenize ("C#")
[ICI, v#v]

We actually have two problems here. By having C and # separated, we lost knowledge of
C# being in the source content. And then if we removed the # from the tokens, then we lose
that information as we also cannot reconstruct C# from adjacent tokens.

Piecing together n-grams

Much has been written about NLTK being used to identify n-grams within text. Ann-gram
is a set of words, n words in length, that are common within a document/corpus (occurring
2 or more times). A 2-gram is any two words commonly repeated, a 3-gram is a three word
phrase, and so on. We will not look into determining the n-grams in a document. We will
focus on reconstructing known n-grams from our token streams, as we will consider those
n-grams to be more important to a search result than the 2 or 3 independent words found in
any order.

In the domain of parsing job listings, important 2-grams can be things such as Computer
Science, SQL Server, Data Science, and Big Data. Additionally, we could consider C# a 2-
gramof 'C' and '#', and hence why we might not want to use the regex parser or '#' as
punctuation when processing a job listing.

We need to have a strategy to recognize these known combinations from out token stream.
Let's look at how to do this.

[192]

Text Wrangling and Analysis Chapter 7

How to do it

First, this example does not intend to make an exhaustive examination or one that is
optimally performant. Just one that is simple to understand and can be easily applied and
extended to our example of parsing job listings:

1. We will examine this process using the following sentences from a
StackOverflow job listing for SpaceX:

We are seeking developers with demonstrable experience in: ASP.NET, C#, SQL Server,
and Angular]S. We are a fast-paced, highly iterative team that has to adapt quickly as our
factory grows.

2. There are a number of high value 2-grams in these two sentences (and I think job
listings are a great place to look for 2-grams). Just looking at it, I can pick out the
following as being important:

ASP.NET

o C#

SQL Server
fast-paced

highly iterative

adapt quickly

demonstrable experience

3. Now, while these may not be 2-grams in the technical definition, when we parse
them, they will all be separated into independent tokens. This can be shown in
the 07/10-ngrams. py file, and in the following example:

from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords

with open('job-snippet.txt', 'r') as file:
data = file.read()

tokens = [word.lower () for word in word_tokenize (data)]
stoplist = stopwords.words ('english')
without_stops = [word for word in tokens if word not in stoplist]

print (without_stops)

[193]

Text Wrangling and Analysis Chapter 7

This produces the following output:

['seeking', 'developers', 'demonstrable', 'experience', ':', 'asp.net',
y', 'e', '#', ',', 'sqgl', 'server', ',', 'angularjs', '.', 'fast-paced',
',', 'highly', 'iterative', 'team',k6 'adapt', 'quickly', 'factory', 'grows',
A} A}]

We want to remove punctuation from this set, but we would like to do it after constructing
some 2-grams, specifically so that we can piece "C#" back into a single token.

4. The scriptin the 07/10-reconstruct-2grams.py file demonstrates a function
to facilitate this. First, we need to describe the 2-grams that we want to
reconstruct. In this file, they are defined as the following;:

grams = {
et [{"#": "'},
"sgl": [{"server": " "}],
"fast": [{"paced": "-"}1],
"highly": [{"iterative": " "}],
"adapt": [{"quickly": " "}1],
"demonstrable": [{"experience", " "}]

}

grams is a dictionary, where the keys specify the "Left" side of the 2-gram. Each key has a
list of dictionaries, where each dictionary key can be the right side of the 2-gram, and the
value is a string that will be placed between the left and right.

5. With this definition, we are able to see "C" and "#" in our tokens be
reconstructed to "C#". "SQL" and "Server" will be "SQL Server".
"fast" and "paced" will resultin "faced-paced".

So we just need a function to make this all work. This function is defined in the
07/buildgrams.py file:

def build_2grams (tokens, patterns):
results = []
left_token = None
for i, t in enumerate (tokens):
if left_token is None:
left_token = t
continue

right_token = t
if left_token.lower () in patterns:

right = patterns[left_token.lower ()]
if right_token.lower () in right:

[194]

Text Wrangling and Analysis Chapter 7

results.append(left_token +
right [right_token.lower ()] + right_token)
left_token = None
else:
results.append (left_token)
else:
results.append (left_token)
left_token = right_token

if left_token is not None:
results.append (left_token)
return results

6. This function, given a set of tokens and a dictionary in the format described
earlier, will return a revised set of tokens with any matching 2-grams put into a
single token. The following demonstrates some simple cases of its use:

grams = {
et {"#': '}
}
print (build_2grams
print (build_2grams
(
(

({'c'l, grams))
(['"#']1, grams))
(r'ec', '#'1, grams))
(['c

print (build_2grams ,
L} l, l#l], grams))

print (build_2grams
This results in the following output:
c'l]
"#'1
C#']
'c#']

7. Now let's apply it to our input. The complete script for this is in the 07/10~
reconstruct-2grams.py file (and adds a few 2-grams):

grams = {
"e". {"#": n"},
"sgl": {"server": " "}
: : ,
"fast": {"paced": "-"}

: : ,
"highly": {"iterative": " "},
"adapt": {"quickly": " "},
"demonstrable": {"experience": " "},
"full": {"stack": " "}

: : ,
"enterprise": {"software": " "},
"bachelor": {"s": "'"}

: : ,
"computer": {"science": " "},
"data": {"SCieI’lce": n "},

[195]

Text Wrangling and Analysis Chapter 7

"current": {"trends": " "},
"real": {"world": " "},

"paid": {"relocation": " "},
"web": {"server": " "},
"relational": {"database": " "},
"no": {"Sql"! " "}

}

with open('job-snippet.txt', 'r') as file:
data = file.read()

tokens = word_tokenize (data)

stoplist = stopwords.words ('english')
without_stops = [word for word in tokens if word not in stoplist]
result = remove_punctuation (build_2grams (without_stops, grams))

print (result)

The results are the following:

['We', 'seeking', 'developers', 'demonstrable experience', 'ASP.NET', 'C#',
'SQL Server', 'AngularJS', 'We', 'fast-paced', 'highly iterative', 'team',
'adapt quickly', 'factory', 'grows']

Perfect!

There's more...

We are providing a dictionary to the build_2grams () function that defines rules for
identifying 2-grams. In this example, we predefined these 2-grams. It is possible to use
NLTK to find 2-grams (and n-grams in general), but with this small sample of one job
positing, it's likely that none will be found.

Scraping a job listing from StackOverflow

Now let's pull a bit of this together to scrape information from a StackOverflow job listing.
We are going to look at just one listing at this time so that we can learn the structure of these
pages and pull information from them. In later chapters, we will look at aggregating results
from multiple listings. Let's now just learn how to do this.

[196]

Text Wrangling and Analysis Chapter 7

Getting ready

StackOverflow actually makes it quite easy to scrape data from their pages. We are going to
use content from a posting

at https://stackoverflow.com/jobs/122517/spacex—enterprise—-software—engineer—fu
ll-stack—-spacex?so=p&sec=True&pg=l&offset=22&cl=Amazon%3b+. This likely will not be
available at the time you read it, so I've included the HTML of this page in the 07/spacex—
job-listing.html file, which we will use for the examples in this chapter.

StackOverflow job listings pages are very structured. It's probably because they're created
by programmers and for programmers. The page (at the time of writing) looks like the
following;:

SpaceX Enterprise Software Engineer, Full Stack
SpaceX - Hawthome, CA

Overview Company More Jobs

About this job

Job type: Permanent Industry: Aerospace, Information Technology....
Experience level: Mid-Level, Senior Company size: 1k-5k people

Role: Full Stack Developer Company type: Private

Technologies

c# sql Javascript asp.net angulars

Job description

Full Stack Enterprise Software Engineer

The EIS (Enterprise Information Systems) team writes the software that builds rockets and powers SpaceX.
We are responsible for all of the software on the factory floor, the warehouses, the financial systems, the
restaurant, and even the public home page. Elon has called us the "nervous system" of SpaceX because
we connect all of the other teams at SpaceX to ensure that the entire rocket building process runs
smoothly.

Responsibilities:

s We are seeking developers with demonstrable experience in: ASP.NET, C#, SQL Server, and
Angular)S. We are a fast-paced, highly iterative team that has to adapt quickly as our factory grows.
We need people who are comfortable tackling new problems, innovating solutions, and interacting with
every facet of the company on a daily basis. Creative, motivated, able to take responsibility and support
the applications you create. Help us get rockets out the door faster!

A StackOverflow job listing

[197]

https://stackoverflow.com/jobs/122517/spacex-enterprise-software-engineer-full-stack-spacex?so=p&sec=True&pg=1&offset=22&cl=Amazon%3b+
https://stackoverflow.com/jobs/122517/spacex-enterprise-software-engineer-full-stack-spacex?so=p&sec=True&pg=1&offset=22&cl=Amazon%3b+

Text Wrangling and Analysis Chapter 7

All of this information is codified within the HTML of the page. You can see for yourself by
analyzing the page content. But what StackOverflow does that is so great is that it puts
much of its page data in an embedded JSON object. This is placed within a <script
type="application/ld+json"> HTML tag, so it's really easy to find. The following
shows a truncated section of this tag (the description is truncated, but all the tags are
shown):

<script type="application/ld+json’=
{

"@context": "http://schema.org",
"JobPosting",

"title": "SpaceX Enterprise Software Engineer, Full Stack”

"skills™: [

e

"agl”,
"javascript”,
"asp.net",
"angularjs"

1.

"description”: "<h2>RAbout this job</h2>\r\n<p>Location
<gpan>Industry: herospace, Information Technology, Web

<h2>Job description</h2> <p>Full Stack Enterprises
financial systems, the restaurant, and even the public home pag
are seeking developers with demonstrable experience in: ASP.NET
the company on a daily basis. Creative, motivated, able to take
mathematics, or similar technical discipline.\rin3+ ye|
Understanding of SQL. Ability to write performant SQL. Ability
Demonatrated ability creating rich web interfaces using a moder
site, and rich client side application from scratch.</lix\rin<l
development as it changes rapidly. Strong knowledge of computer

"datePosted": "2017-11-01",

"validThrough": "2018-09-30",

"employmentType": "FULL TIME",
xperienceRequirements”: "Mid-Level, Senior",
ndustry": [

"herospace”,
"Information Technology",
"Web Development”
1.
"jobBenefits": [
"Stock Awards and 401k plan”,
"Full medical, dental, and vision insurance",
"Free gym membership”,
"In-house restaurant, coffee bar, and frozen yogurt”,
"Flexible work hours”,
"Relocation expenses covered",
"Onsite Dental",
"Onsite Medical Clinic"
1.
"hiringOrganization": {
"#type": "Organization"”,
"name”: "SpaceX",
"sameAs": "http://www.spacex.com",
"logo™: "https://i.stack.imgur.com/EZrglD.png",
"description": "<p>SpaceX was founded under the belief that|
Mars.</p>"
.

"jobLocation": [

"Btype": "Place",

"address": {
"Btype": "Postaliddress”,
"addressCountry": "US",
"addressRegion": "CA",
"addressLocality”: "Hawthorne",
"streetAddress": "Rocket Road",
"postalCode”: "90250"

}
}
1
}

</script>

The JSON embedded in a job listing

[198]

Text Wrangling and Analysis Chapter 7

This makes it very easy to get the content, as we can simply retrieve the page, find this tag,
and then convert this JSON into a Python object with the json library. In addition to the
actual job description, is also included much of the "metadata" of the job posting, such as
skills, industries, benefits, and location information. We don't need to search the HTML for
the information - just find this tag and load the JSON. Note that if we want to find items,
such as Job Responsibilities, we still need to parse the description. Also note that the
description contains full HTML, so when parsing that, we would need to still deal with
HTML tags.

How to do it

Let's go and get the job description from this page. We will simply retrieve the contents in
this recipe. We will clean it up in the next recipe.

The full code for this example is in the 07/12_scrape_job_stackoverflow.py file. Let's
walk through it:

1. First we read the file:

with open ("spacex—job-listing.txt", "r") as file:
content = file.read()

2. Then we load the content into a BeautifulSoup object, and retrieve the <script
type="application/ld+json"> tag:

bs = BeautifulSoup (content, "lxml")
script_tag = bs.find("script", {"type": "application/ld+json"})

3. Now that we have that tag, we can load its contents into a Python dictionary
using the json library:

job_listing_contents = json.loads (script_tag.contents[0])
print (job_listing_contents)

[199]

Text Wrangling and Analysis Chapter 7

The output of this looks like the following (this is truncated for brevity):

{'@context': 'http://schema.org', '@type': 'JobPosting', 'title': 'SpaceX
Enterprise Software Engineer, Full Stack', 'skills': ['c#', 'sqgl',
'javascript', 'asp.net', 'angularjs'], 'description': '<h2>About this

job</h2>\r\n<p>Location options: Paid
relocation
Job type:
Permanent
Experience level: Mid-
Level, Senior
Role: Full Stack
Developer
Industry: Aerospace,
Information Technology, Web Development
Company
size: 1lk-5k people
Company type:
Private
</p>

<h2>Technologies</h2>
<p>c#, sqgl, javascript, asp.net, angularjs</p>

<h2>Job
description</h2> <p>Full Stack Enterprise Software
Engineer</p>\r\n<p>The EIS (Enterprise Information Systems) team
writes the software that builds rockets and powers SpaceX. We are
responsible for

4. This is great because we can now do some simple tasks with this without
involving HTML parsing. As an example, we can retrieve the skills required for
the job with just the following code:

print the skills
for skill in job_listing_contents["skills"]:
print (skill)

It produces the following output:

c#

sql
javascript
asp.net
angularjs

There's more...

The description is still stored in HTML within the description property of this JSON object.
We will examine the parsing of that data in the next recipe.

[200]

Text Wrangling and Analysis Chapter 7

Reading and cleaning the description in the
job listing

The description of the job listing is still in HTML. We will want to extract the valuable
content out of this data, so we will need to parse this HTML and perform tokenization, stop

word removal, common word removal, do some tech 2-gram processing, and in general all
of those different processes. Let's look at doing these.

Getting ready

I'have collapsed the code for determining tech-based 2-grams into the 07/tech2grams.py
file. We will use the tech_2grams function within the file.

How to do it...

The code for this example is in the 07/13_clean_jd.py file. It continues on where the
07/12_scrape_job_stackoverflow.py file ends:

1. We start by creating a BeautifulSoup object from the description key of the
description we loaded. We will also print this to see what it looks like:

desc_bs = BeautifulSoup (job_listing_contents["description"],
Al lxml n)

print (desc_bs)

<p>Location options: Paid
relocation
Job type:
Permanent
Experience level:
Mid-Level, Senior
Role:
Full Stack Developer
Industry:
Aerospace, Information Technology, Web
Development
Company size: 1k-5k
people
Company type:
Private
</p>

<h2>Technologies<
/h2> <p>c#, sqgl, javascript, asp.net, angularjs</p>

<h2>Job description</h2> <p>Full Stack Enterprise
Software Engineer</p>

<p>The EIS (Enterprise Information Systems) team writes the
software that builds rockets and powers SpaceX. We are responsible
for all of the software on the factory floor, the warehouses, the
financial systems, the restaurant, and even the public home page.

[201]

Text Wrangling and Analysis Chapter 7

Elon has called us the "nervous system" of SpaceX because we
connect all of the other teams at SpaceX to ensure that the entire
rocket building process runs smoothly.</p>
<p>Responsibilities:</p>

We are seeking developers with demonstrable experience in:
ASP.NET, C#, SQL Server, and AngularJS. We are a fast-paced, highly
iterative team that has to adapt quickly as our factory grows. We
need people who are comfortable tackling new problems, innovating
solutions, and interacting with every facet of the company on a
daily basis. Creative, motivated, able to take responsibility and
support the applications you create. Help us get rockets out the
door faster!</1li>

<p>Basic Qualifications:</p>

Bachelor's degree in computer science, engineering, physics,
mathematics, or similar technical discipline.</1i>

<1i>3+ years of experience developing across a full-stack: Web
server, relational database, and client-side
(HTML/Javascript/CSS) .</1i>

<p>Preferred Skills and Experience:</p>

Database - Understanding of SQL. Ability to write performant
SQL. Ability to diagnose queries, and work with DBAs.</1i>
Server - Knowledge of how web servers operate on a low-level.
Web protocols. Designing APIs. How to scale web sites. Increase
performance and diagnose problems.</1li>

<1i>UI - Demonstrated ability creating rich web interfaces using a
modern client side framework. Good judgment in UX/UI design.
Understands the finer points of HTML, CSS, and Javascript - know
which tools to use when and why.</1li>

System architecture - Knowledge of how to structure a database,
web site, and rich client side application from scratch.</1li>
Quality - Demonstrated usage of different testing patterns,
continuous integration processes, build deployment systems.
Continuous monitoring.</1i>

Current - Up to date with current trends, patterns, goings on
in the world of web development as it changes rapidly. Strong
knowledge of computer science fundamentals and applying them in the
real-world.</1i>

</body></html>

[202]

Text Wrangling and Analysis Chapter 7

2. We want to go through this and remove all of the HTML and only be left with the
text of the description. That will be what we then tokenize. Fortunately,
throwing out all the HTML tags is easy with BeautifulSoup:

just_text = desc_bs.find_all (text=True)
print (just_text)

['About this job', '\n', 'Location options: ', 'Paid relocation',
'Job type: ', 'Permanent', 'Experience level: ', 'Mid-Level,
Senior', 'Role: ', 'Full Stack Developer', 'Industry: ',
'Aerospace, Information Technology, Web Development', 'Company
size: ', '1k-5k people', 'Company type: ', 'Private',
'Technologies', ' ', 'c#, sqgl, javascript, asp.net, angularjs', '
', 'Job description', ' ', 'Full Stack Enterprise\xaOSoftware

Engineer', '\n', 'The EIS (Enterprise Information Systems) team
writes the software that builds rockets and powers SpaceX. We are
responsible for all of the software on the factory floor, the
warehouses, the financial systems, the restaurant, and even the
public home page. Elon has called us the "nervous system" of SpaceX
because we connect all of the other teams at SpaceX to ensure that
the entire rocket building process runs smoothly.', '\n',
'Responsibilities:', '\n', '\n', 'We are seeking developers with
demonstrable experience in: ASP.NET, C#, SQL Server, and AngularJsS.
We are a fast-paced, highly iterative team that has to adapt
quickly as our factory grows. We need people who are comfortable
tackling new problems, innovating solutions, and interacting with
every facet of the company on a daily basis. Creative, motivated,
able to take responsibility and support the applications you
create. Help us get rockets out the door faster!', '\n', '\n',
'Basic Qualifications:', '\n', '\n', "Bachelor's degree in computer
science, engineering, physics, mathematics, or similar technical
discipline.", '\n', '3+ years of experience developing across a
full-stack:\xa0 Web server, relational database, and client-side
(HTML/Javascript/CSS)."', '\n', '\n', 'Preferred Skills and
Experience:', '\n', '\n', 'Database - Understanding of SQL. Ability
to write performant SQL. Ability to diagnose queries, and work with
DBAs.', '\n', 'Server - Knowledge of how web servers operate on a
low—level. Web protocols. Designing APIs. How to scale web sites.
Increase performance and diagnose problems.', '\n', 'UI -
Demonstrated ability creating rich web interfaces using a modern
client side framework. Good judgment in UX/UI design.\xaO0
Understands the finer points of HTML, CSS, and Javascript - know
which tools to use when and why.', '\n', 'System architecture -
Knowledge of how to structure a database, web site, and rich client
side application from scratch.', '\n', 'Quality - Demonstrated
usage of different testing patterns, continuous integration
processes, build deployment systems. Continuous monitoring.', '\n',

[203]

Text Wrangling and Analysis Chapter 7

'Current - Up to date with current trends, patterns, goings on in
the world of web development as it changes rapidly. Strong
knowledge of computer science fundamentals and applying them in the
real-world.', '"\n', ' ']

Just super! We now have this, and it is already broken down into what can be considered
sentences!

3. Let's join these all together, word tokenize them, get rid of stop words, and also
apply common tech job 2-grams:

joined = ' '.join (just_text)
tokens = word_tokenize (joined)

stop_list = stopwords.words ('english')

with_no_stops = [word for word in tokens if word not in stop_list]
cleaned = remove_punctuation (two_grammed)

print (cleaned)

And this has the following output:

['Job', 'Location', 'options', 'Paid relocation', 'Job', 'type',
'Permanent', 'Experience', 'level', 'Mid-Level', 'Senior', 'Role', 'Full-
Stack', 'Developer', 'Industry', 'Aerospace', 'Information Technology',
'Web Development', 'Company', 'size', 'l1lk-5k', 'people', 'Company', 'type',
'Private', 'Technologies', 'c#', 'sqgl', 'javascript', 'asp.net',
'angularjs', 'Job', 'description', 'Full-Stack', 'Enterprise Software',
'Engineer', 'EIS', 'Enterprise', 'Information', 'Systems', 'team',
'writes', 'software', 'builds', 'rockets', 'powers', 'SpaceX',
'responsible', 'software', 'factory', 'floor', 'warehouses', 'financial',
'systems', 'restaurant', 'even', 'public', 'home', 'page', 'Elon',
'called', 'us', 'nervous', 'system', 'SpaceX', 'connect', 'teams',
'SpaceX', 'ensure', 'entire', 'rocket', 'building', 'process', 'runs',
'smoothly', 'Responsibilities', 'seeking', 'developers', 'demonstrable
experience', 'ASP.NET', 'C#', 'SQL Server', 'AngularJS',6 'fast-paced',
'highly iterative', 'team', 'adapt quickly', 'factory', 'grows', 'need',
'people', 'comfortable', 'tackling', 'new', 'problems', 'innovating',
'solutions', 'interacting', 'every', 'facet', 'company', 'daily', 'basis’',
'Creative', 'motivated', 'able', 'take', 'responsibility', 'support',
'applications', 'create', 'Help', 'us', 'get', 'rockets', 'door', 'faster',
'Basic', 'Qualifications', 'Bachelor', "'s", 'degree', 'computer science',
'engineering', 'physics', 'mathematics', 'similar', 'technical',
'discipline', '3+', 'years', 'experience', 'developing', 'across', 'full-
stack', 'Web server', 'relational database', 'client-side',
'HTML/Javascript/CSS', 'Preferred', 'Skills', 'Experience',6 'Database',
'Understanding', 'SQL', 'Ability', 'write', 'performant', 'SQL', 'Ability',
'diagnose', 'queries', 'work', 'DBAs', 'Server', 'Knowledge',K 'web',

[204]

Text Wrangling and Analysis Chapter 7

'servers', 'operate', 'low-level', 'Web', 'protocols', 'Designing', 'APIs',
'scale', 'web', 'sites', 'Increase', 'performance', 'diagnose', 'problems',
'UI', 'Demonstrated', 'ability', 'creating', 'rich', 'web', 'interfaces',
'using', 'modern', 'client-side', 'framework', 'Good', 'judgment',6 'UX/UI',
'design', 'Understands', 'finer', 'points', 'HTML', 'CSS', 'Javascript',
'know', 'tools', 'use', 'System', 'architecture', 'Knowledge', 'structure',
'database', 'web', 'site', 'rich', 'client-side', 'application', 'scratch',
'Quality', 'Demonstrated', 'usage', 'different', 'testing', 'patterns',
'continuous integration', 'processes', 'build', 'deployment', 'systems',
'Continuous monitoring', 'Current', 'date', 'current trends', 'patterns',
'goings', 'world', 'web development', 'changes', 'rapidly', 'Strong',
'knowledge', 'computer science', 'fundamentals', 'applying', 'real-world']

I think that's a very nice and refined set of keywords pulled out of that job listing.

[205]

Searching, Mining and
Visualizing Data

In this chapter, we will cover:

¢ Geocoding an IP address
Collecting IP addresses of Wikipedia edits
Visualizing contributor location frequency on Wikipedia

Creating a word cloud from a StackOverflow job listing

Crawling links on Wikipedia

Visualizing page relationships on Wikipedia

Calculating degrees of separation between Wikipedia pages

Introduction

In this chapter we will examine how to search web content, derive analytical results, and
also visualize those results. We will learn how to locate posters of content an visualize the
distribution of their locations. Then we will examine how to scrape, model, and visualize
the relationships between pages on Wikipedia.

Searching, Mining and Visualizing Data Chapter 8

Geocoding an IP address

Geocoding is the process of converting an address into geographic coordinates. These
addresses can be actual street addresses, which can be geocoded with various tools such as
the Google maps geocoding API (https ://developers.google.com/maps/documentation/
geocoding/intro). IP addresses can be, and often are, geocoded by various applications to
determine where computers, and their users, are located. A very common and valuable use
is analyzing web server logs to determine the source of users of your website.

This is possible because an IP address does not only represent an address of the computer
in terms of being able to communicate with that computer, but often can also be converted
into an approximate physical location by looking it up in IP address / location databases.
There are many of these databases available, all of which are maintained by various
registrars (such as ICANN). There are also other tools that can report geographic locations
for public IP addresses.

There are a number of free services for IP geolocation. We will examine one that is quite
easy to use, freegeoip.net.

Getting ready

Freegeoip.net is a free geocoding service. If you go to http://www. freegeoip.net in your
browser, you will be presented with a page similar to the following;:

[207]

https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
http://www.freegeoip.net
http://www.freegeoip.net
http://www.freegeoip.net
http://www.freegeoip.net
http://www.freegeoip.net
http://www.freegeoip.net
htt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>